39 research outputs found

    Ghrelin and Functional Dyspepsia

    Get PDF
    The majority of patients with dyspepsia have no identifiable cause of their disease, leading to a diagnosis of functional dyspepsia (FD). While a number of different factors affect gut activity, components of the nervous and endocrine systems are essential for normal gut function. Communication between the brain and gut occurs via direct neural connections or endocrine signaling events. Ghrelin, a peptide produced by the stomach, affects gastric motility/emptying and secretion, suggesting it may play a pathophysiological role in FD. It is also possible that the functional abnormalities in FD may affect ghrelin production in the stomach. Plasma ghrelin levels are reported to be altered in FD, correlating with FD symptom score. Furthermore, some patients with FD suffer from anorexia with body-weight loss. As ghrelin increases gastric emptying and promotes feeding, ghrelin therapy may be a new approach to the treatment of FD

    PD-1 blockade therapy promotes infiltration of tumor-attacking exhausted T cell clonotypes

    Get PDF
    PD-1 blockade exerts clinical efficacy against various types of cancer by reinvigorating T cells that directly attack tumor cells (tumor-specific T cells) in the tumor microenvironment (TME), and tumor-infiltrating lymphocytes (TILs) also comprise nonspecific bystander T cells. Here, using single-cell sequencing, we show that TILs include skewed T cell clonotypes, which are characterized by exhaustion (T-ex) or nonexhaustion signatures (Tnon-ex). Among skewed clonotypes, those in the T-ex, but not those in the Tnon-ex, cluster respond to autologous tumor cell lines. After PD-1 blockade, non-preexisting tumor-specific clonotypes in the T-ex cluster appear in the TME. Tumor-draining lymph nodes (TDLNs) without metastasis harbor a considerable number of such clonotypes, whereas these clonotypes are rarely detected in peripheral blood. We propose that tumor-infiltrating skewed T cell clonotypes with an exhausted phenotype directly attack tumor cells and that PD-1 blockade can promote infiltration of such T-ex clonotypes, mainly from TDLNs

    グレリン ノ ブンピ チョウセツ ト サヨウ ニ カンスル ケンキュウ

    No full text
    京都大学0048新制・課程博士博士(医学)甲第11429号医博第2852号新制||医||893(附属図書館)23072UT51-2005-D179京都大学大学院医学研究科内科系専攻(主査)教授 篠原 隆司, 教授 横出 正之, 教授 福島 雅典学位規則第4条第1項該当Doctor of Medical ScienceKyoto UniversityDA

    Oxytocin and dopamine stimulate ghrelin secretion by the ghrelin-producing cell line, MGN3-1 in vitro.

    Get PDF
    To understand the physiological role of ghrelin, it is crucial to study both the actions of ghrelin and the regulation of ghrelin secretion. Although ghrelin actions have been extensively revealed, the direct factors regulating ghrelin secretion by ghrelin-producing cells (X/A-like cells), however, is not fully understood. In this study, we examined the effects of peptide hormones and neurotransmitters on in vitro ghrelin secretion by the recently developed ghrelin-producing cell line MGN3-1. Oxytocin and vasopressin significantly stimulated ghrelin secretion by MGN3-1 cells. Because MGN3-1 cells express only oxytocin receptor mRNA, not vasopressin receptor mRNA, oxytocin is the likely regulator, with the effect of vasopressin mediated by a cross-reaction. We also discovered that dopamine stimulates ghrelin secretion from MGN3-1 cells in a similar manner to the previously known ghrelin stimulators, epinephrine and norepinephrine. MGN3-1 cells expressed mRNA encoding dopamine receptors D1a and D2. The dopamine receptor D1 agonist fenoldopam stimulated ghrelin secretion, whereas the D2, D3 agonist bromocriptine did not. Furthermore, the D1 receptor antagonist SKF83566 attenuated the stimulatory effect of dopamine. These results indicate that the stimulatory effect of dopamine on ghrelin secretion is mediated by the D1a receptor. In conclusion, we identified two direct regulators of ghrelin, oxytocin and dopamine. These findings will provide new direction for further studies seeking to further understand the regulation of ghrelin secretion, which will in turn lead to greater understanding of the physiological role of ghrelin

    Rapidly Progressing Pituitary Mass in B-cell Lymphoma

    No full text

    A Postweaning Reduction in Circulating Ghrelin Temporarily Alters Growth Hormone (GH) Responsiveness to GH-Releasing Hormone in Male Mice But Does Not Affect Somatic Growth

    Get PDF
    Ghrelin was initially identified as an endogenous ligand for the GH secretagogue receptor. When administrated exogenously, ghrelin stimulates GH release and food intake. Previous reports in ghrelin-null mice, whichdonot exhibit impairedgrowthnor appetite, question the physiologic role of ghrelin in the regulation of the GH/IGF-I axis. In this study, wegenerated a transgenic mouse that expresses human diphtheria toxin (DT) receptor (DTR) cDNA in ghrelin-secretion cells [ghrelinpromoter DTR-transgenic (GPDTR-Tg) mice]. Administration of DT to this mouse ablates ghrelinsecretion cells in a controlled manner. After injection of DT into GPDTR-Tg mice, ghrelin-secreting cells were ablated, and plasma levels of ghrelin were markedly decreased [nontransgenic littermates, 70.6 10.2 fmol/ml vs. GPDTR-Tg, 5.3 2.3 fmol/ml]. To elucidate the physiological roles of circulating ghrelin on GH secretion and somatic growth, 3-wk-old GPDTR-Tg mice were treated withDTtwice aweekfor 5 wk. TheGHresponses toGHRHin male GPDTR-Tg mice were significantly lower than those in wild-type mice at 5 wk of age. However, those were normalized at 8 wk of age. In contrast, in female mice, there was no difference in GH response to GHRH between GPDTR-Tg mice and controls at 5 or 8wkof age. The gender-dependent differences in response toGHRHwere observed in ghrelin-ablated mice. However, GPDTR-Tg mice did not display any decreases in IGF-I levels or any growth retardation. Our results strongly suggest that circulating ghrelin does not play a crucial role in somatic growth. (Endocrinology 151: 1743–1750, 2010

    Intracerebroventricular Administration of C-Type Natriuretic Peptide Suppresses Food Intake via Activation of the Melanocortin System in Mice.

    Get PDF
    C-type natriuretic peptide (CNP) and its receptor are abundantly distributed in the brain, especially in the arcuate nucleus (ARC) of the hypothalamus associated with regulating energy homeostasis. To elucidate the possible involvement of CNP in energy regulation, we examined the effects of intracerebroventricular administration of CNP on food intake in mice. The intracerebroventricular administration of CNP-22 and CNP-53 significantly suppressed food intake on 4-h refeeding after 48-h fasting. Next, intracerebroventricular administration of CNP-22 and CNP-53 significantly decreased nocturnal food intake. The increment of food intake induced by neuropeptide Y and ghrelin was markedly suppressed by intracerebroventricular administration of CNP-22 and CNP-53. When SHU9119, an antagonist for melanocortin-3 and melanocortin-4 receptors, was coadministered with CNP-53, the suppressive effect of CNP-53 on refeeding after 48-h fasting was significantly attenuated by SHU9119. Immunohistochemical analysis revealed that intracerebroventricular administration of CNP-53 markedly increased the number of c-Fos-positive cells in the ARC, paraventricular nucleus, dorsomedial hypothalamus, ventromedial hypothalamic nucleus, and lateral hypothalamus. In particular, c-Fos-positive cells in the ARC after intracerebroventricular administration of CNP-53 were coexpressed with α-melanocyte-stimulating hormone immunoreactivity. These results indicated that intracerebroventricular administration of CNP induces an anorexigenic action, in part, via activation of the melanocortin system
    corecore