4 research outputs found

    Recent advancements in the applications of carbon nanodots:Exploring the rising star of nanotechnology

    No full text
    Nanoparticles possess fascinating properties and applications, and there has been increasing critical consideration of their use. Because carbon is a component with immaterial cytotoxicity and extensive biocompatibility with different components, carbon nanomaterials have a wide scope of potential uses. Carbon nanodots are a type of carbon nanoparticle that is increasingly being researched because of their astounding properties such as extraordinary luminescence, simplicity of amalgamation and surface functionalization, and biocompatibility. Because of these properties, carbon nanodots can be used as material sensors, as indicators in fluorescent tests, and as nanomaterials for biomedical applications. In this review, we report on the ongoing and noteworthy utilization of carbon quantum dots such as bioimaging tests and photocatalytic applications. In addition, the extension and future components of these materials, which can be investigated for new potential applications, are discussed

    An Investigation of the Cytotoxicity and Caspase-Mediated Apoptotic Effect of Green Synthesized Zinc Oxide Nanoparticles Using Eclipta prostrata on Human Liver Carcinoma Cells

    No full text
    Cancer is a leading cause of death worldwide and sustained focus is on the discovery and development of newer and better tolerated anticancer drugs, especially from plants. In the present study, a simple, eco-friendly, and inexpensive approach was followed for the synthesis of zinc oxide nanoparticles (ZnO NPs) using the aqueous leaf extract of Eclipta prostrata. The synthesized ZnO NPs were characterized by UV-visible absorption spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX), High-resolution transmission electron microscopy (HRTEM), and Selected area (electron) diffraction (SAED). The HRTEM images confirmed the presence of triangle, radial, hexagonal, rod, and rectangle, shaped with an average size of 29 ± 1.3 nm. The functional groups for synthesized ZnO NPs were 3852 cm−1 for H-H weak peak, 3138 cm−1 for aromatic C-H extend, and 1648 cm−1 for Aromatic ring stretch. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), caspase and DNA fragmentation assays were carried out using various concentrations of ZnO NPs ranging from 1 to 100 mg/mL. The synthesized ZnO NPs showed dose dependent cytopathic effects in the Hep-G2 cell line. At 100 mg/mL concentration, the synthesized ZnO NPs exhibited significant cytotoxic effects and the apoptotic features were confirmed through caspase-3 activation and DNA fragmentation assays

    Phytochemical composition, mosquito larvicidal, ovicidal and repellent activity of Calotropis procera against Culex tritaeniorhynchus and Culex gelidus

    No full text
    Focus of this study was to determine the phytochemical composition and mosquito controlling potential of aqueous extract of Calotropis procera (Ait.) R.Br. leaves using in vitro methods. Preliminary phytochemical analysis of the extract showed the presence of phenolic compounds, flavonoids, alkaloids, tannins, saponins, glycosides and phytosterols as major phytochemical groups. Aqueous extract of C. procera leaves (1,000 ppm) exhibited 100% larvicidal activity against fourth instar larvae of Culex tritaeniorhynchus and Cx. gelidus. Extract treatment (1,000 ppm) of both mosquitoes eggs resulted in to 100% ovicidal activity. At 1,000 ppm, extract provided complete protection from mosquito bite for 240 min against both mosquitoes; however at lower doses the protection time was less. The findings of the current study emphasise the potentiality of C. procera leaves for controlling the mosquito population and their possible way in the developing the natural insecticide for the control of Cx. tritaeniorhynchus and Cx. gelidus mosquitoes
    corecore