69 research outputs found

    Mitigating the effect of coincidental correctness in spectrum based fault localization

    Get PDF
    2013 Summer.Includes bibliographical references.Coincidentally correct test cases are those that execute faulty program statements but do not result in failures. The presence of such test cases in a test suite reduces the effectiveness of spectrum-based fault localization approaches, such as Ochiai and Tarantula, which localize faulty statements by calculating a suspiciousness score for every program statement from test coverage information. The goal of this dissertation is to improve the understanding of how the presence of coincidentally correct test cases impacts the effectiveness of spectrum-based fault localization approaches and to develop a family of approaches that improve fault localization effectiveness by mitigating the effect of coincidentally correct test cases. Each approach (1)~classifies coincidentally correct test cases using test coverage information, and (2)~recalculates a suspiciousness score for every program statement using the classification information. We developed classification approaches using test coverage metrics at different levels of granularity, such as statement, branch, and function. We developed a new approach for ranking program statements using suspiciousness scores calculated based on the heuristic that the statements covered by more failing and coincidentally correct test cases are more suspicious. We extended the family of fault localization approaches to support multiple faults. We developed an approach to incorporate tester feedback to mitigate the effect of coincidental correctness. The approach analyzes tester feedback to determine a lower bound for the number of coincidentally correct test cases present in a test suite. The lower bound is also used to determine when classification of coincidentally correct test cases can improve fault localization effectiveness. We evaluated the fault localization effectiveness of our approaches and studied how the effectiveness changes for varying characteristics of test suites, such as size, test suite type (e.g., random, coverage adequate), and the percentage of passing test cases that are coincidentally correct. Our key findings are summarized as follows. Mitigating the effect of coincidentally correct test cases improved fault localization effectiveness. The extent of the improvement increased with an increase in the percentage of passing test cases that were coincidentally correct, although no improvement was observed when most passing test cases in a test suite were coincidentally correct. When random test suites were used to localize faults, a coarse-grained coverage spectrum, such as function coverage, resulted in better classification than fine-grained coverage spectra, such as statement and branch coverage. Utilizing tester feedback improved the precision of classification. Mitigating the effect of coincidental correctness in the presence of two faults improved the effectiveness for both faults simultaneously for most faulty programs. Faulty statements that were harder to reach and that affected fewer program statements resulted in fewer coincidentally correct test cases and were more effectively localized

    Quantum dissipation and the virial theorem

    Full text link
    In this note, we study the celebrated virial theorem for dissipative systems, both classical and quantum. The classical formulation is discussed and an intriguing effect of the random force (noise) is made explicit in the context of the virial theorem. Subsequently, we derive a generalized virial theorem for a dissipative quantum oscillator, i.e. a quantum oscillator coupled with a quantum heat bath. Such a heat bath is modeled as an infinite collection of independent quantum oscillators with a certain distribution of initial conditions. In this situation, the non-Markovian nature of the quantum noise leads to novel bath-induced terms in the virial theorem. We also consider the case of an electrical circuit with thermal noise and analyze the role of non-Markovian noise in the context of the virial theorem.Comment: v2: Revised version to appear in Physica

    General structure of gauge boson propagator and its spectra in a hot magnetized medium

    Full text link
    Based on transversality condition of gauge boson self-energy we have systematically constructed the general structure of the gauge boson two-point functions using four linearly independent basis tensors in presence of a nontrivial background, i.e., hot magnetized material medium. The hard thermal loop approximation has been used for the heat bath to compute various form factors associated with the gauge boson's two point functions both in strong and weak field approximation. We have also analyzed the dispersion of a gauge boson (e.g., gluon) using the effective propagator both in strong and weak magnetic field approximation. The formalism is also applicable to QED. The presence of only thermal background leads to a longitudinal (plasmon) mode and a two-fold degenerate transverse mode. In presence of a hot magnetized background medium the degeneracy of the two transverse modes is lifted and one gets three quasiparticle modes. In weak field approximation one gets two transverse modes and one plasmon mode. On the other hand, in strong field approximation also one gets the three modes in Lowest Landau Level. The general structure of two-point function may be useful for computing the thermo-magnetic correction of various quantities associated with a gauge boson.Comment: 39 pages, 7 figure

    Inverse magnetic catalysis -- how much do we know about?

    Full text link
    Some of the advances made in the literature to understand the phase transitions of quark matter in the presence of strong magnetic field and finite temperature (zero quark chemical potential) are reviewed. We start by discussing the physics behind the Magnetic catalysis (MC) at zero/finite temperature and then focus on the lattice predictions for inverse magnetic catalysis (IMC) at high temperature and strong magnetic fields. Possible explanations for the IMC are covered as well. Finally, we discuss recent efforts to modify QCD (quantum chromodynamics) effective models in order to reproduce the IMC observed on the lattice simulations. We emphasize the fact that applying thermo-magnetic effects on the coupling constant of the NJL model significantly improve the effectiveness of the NJL model to obtain a reasonable physical description of hot and magnetized quark matter being in agreement with lattice results.Comment: Invited mini-review submitted to EPJST. v2 improved few sentences throughout the paper, added reference
    • …
    corecore