14 research outputs found

    Comparison of Tracheal Diameter Measured by Chest X-Ray and by Computed Tomography

    Get PDF
    Assessments of tracheal diameter (TD) are important to select proper endotracheal tubes. Previous studies have used X-ray and physical indices to estimate tracheal diameter but these may not reflect the actual TD. We compared TD measured by X-ray (TD-XP) and by computer tomography (TD-CT) in 200 patients. Also, we analyzed correlation of TD-CT with physical indices such as age, height, weight, and BMI. TD-XP and TD-CT were significantly correlated (male: n = 55, P = .0146; female: n = 91, P = .001). TD-XP was 0.4 mm wider in male and 1.0 mm wider in female than TD-CT. However, correlation coefficients of TD-XP and TD-CT are very weak (male: r = 0.36; female: r = 0.653). TD-CT did not correlate with age, height, weight, or BMI. Our findings suggest that correlations of TD-XP and TD are statistically significant but not clinically significant. Physical indices are not useful to estimate TD

    Comparative Effects of Verapamil, Nicardipine, and Nitroglycerin on Myocardial Ischemia/Reperfusion Injury

    Get PDF
    The aim of this experiment was to establish whether verapamil, nicardipine, and nitroglycerin have (1) infarct size-limiting effects and (2) antiarrhythmic effects in in vivo rabbit hearts during ischemia/reperfusion. Rabbits received regional ischemia by 30 min of left anterior descending coronary artery occlusion followed by 3 hours of reperfusion under ketamine and xylazine anesthesia. The animals were randomly assigned to the following 4 treatment groups: a control group, a verapamil group, a nicardipine group, and a nitroglycerin group. A continuous infusion of verapamil, nicardipine, or nitroglycerin was initiated 5 min prior to ischemia. Infarct size/area at risk decreased in verapamil, and nitroglycerin. The incidence of ischemia-induced arrhythmia decreased in nicardipine, verapamil and nitroglycerin. The incidence of reperfusion-induced arrhythmias decreased in verapamil and nitroglycerin. From the present experimental results, verapamil and nitroglycerin rather than nicardipine did afford significant protection to the heart subjected to ischemia and reperfusion in a rabbit model

    Donepezil reverses buprenorphine-induced central respiratory depression in anesthetized rabbits

    Full text link
    Buprenorphine is a mixed opioid receptor agonist-antagonist used in acute and chronic pain management. Although this agent's analgesic effect increases in a dose-dependent manner, buprenorphine-induced respiratory depression shows a marked ceiling effect at higher doses, which is considered to be an indicator of safety. Nevertheless, cases of overdose mortality or severe respiratory depression associated with buprenorphine use have been reported. Naloxone can reverse buprenorphine-induced respiratory depression, but is slow-acting and unstable, meaning that new drug candidates able to specifically antagonize buprenorphine-induced respiratory depression are needed in order to enable maximal analgesic effect without respiratory depression. Acetylcholine is an excitatory neurotransmitter in central respiratory control. We previously showed that a long-acting acetylcholinesterase inhibitor, donepezil, antagonizes morphine-induced respiratory depression. We have now investigated how donepezil affects buprenorphine-induced respiratory depression in anesthetized, paralyzed, and artificially ventilated rabbits. We measured phrenic nerve discharge as an Índex of respiratory rate and amplitude, and compared discharges following the injection of buprenorphine with discharges following the injection of donepezil. Buprenorphine-induced suppression of the respiratory rate and respiratory amplitude was antagonized by donepezil (78.4 ± 4.8 %, 92.3% ± 22.8 % of control, respectively). These findings indicate that systemically administered donepezil restores buprenorphine-induced respiratory depression in anesthetized rabbits

    Effect of carbamazepine and gabapentin on excitability in the trigeminal subnucleus caudalis of neonatal rats using a voltage-sensitive dye imaging technique

    No full text
    BACKGROUND: The antiepileptic drugs carbamazepine and gabapentin are effective in treating neuropathic pain and trigeminal neuralgia. In the present study, to analyze the effects of carbamazepine and gabapentin on neuronal excitation in the spinal trigeminal subnucleus caudalis (Sp5c) in the medulla oblongata, we recorded temporal changes in nociceptive afferent activity in the Sp5c of trigeminal nerve-attached brainstem slices of neonatal rats using a voltage-sensitive dye imaging technique. RESULTS: Electrical stimulation of the trigeminal nerve rootlet evoked changes in the fluorescence intensity of dye in the Sp5c. The optical signals were composed of two phases, a fast component with a sharp peak followed by a long-lasting component with a period of more than 500 ms. This evoked excitation was not influenced by administration of carbamazepine (10, 100 and 1,000 μΜ) or gabapentin (1 and 10 μΜ), but was increased by administration of 100 μΜ gabapentin. This evoked excitation was increased further in low Mg²+ (0.8 mM) conditions, and this effect of low Mg²+ concentration was antagonized by 30 μM DL-2-amino-5-phosphonopentanoic acid (AP5), a N-methyl-D-as-partate (NMDA) receptor blocker. The increased excitation in low Mg²+ conditions was also antagonized by carbamazepine (1,000 μM) and gabapentin (100 μM). CONCLUSION: Carbamazepine and gabapentin did not decrease electrically evoked excitation in the Sp5c in control conditions. Further excitation in low Mg²+ conditions was antagonized by the NMDA receptor blocker AP5. Carbamazepine and gabapentin had similar effects to AP5 on evoked excitation in the Sp5c in low Mg²+ conditions. Thus, we concluded that carbamazepine and gabapentin may act by blocking NMDA receptors in the Sp5c, which contributes to its anti-hypersensitivity in neuropathic pain
    corecore