3 research outputs found

    Arginine-Containing Tripeptides as Analgesic Substances: The Possible Mechanism of Ligand-Receptor Binding to the Slow Sodium Channel

    No full text
    Two short arginine-containing tripeptides, H-Arg-Arg-Arg-OH (TP1) and Ac-Arg-Arg-Arg-NH2 (TP2), have been shown by the patch-clamp method to modulate the NaV1.8 channels of DRG primary sensory neurons, which are responsible for the generation of nociceptive signals. Conformational analysis of the tripeptides indicates that the key role in the ligand-receptor binding of TP1 and TP2 to the NaV1.8 channel is played by two positively charged guanidinium groups of the arginine side chains located at the characteristic distance of ~9 Å from each other. The tripeptide effect on the NaV1.8 channel activation gating device has been retained when the N- and C-terminal groups of TP1 were structurally modified to TP2 to protect the attacking peptide from proteolytic cleavage by exopeptidases during its delivery to the molecular target, the NaV1.8 channel. As demonstrated by the organotypic tissue culture method, the agents do not affect the DRG neurite growth, which makes it possible to expect the absence of adverse side effects at the tissue level upon administration of TP1 and TP2. The data obtained indicate that both tripeptides can have great therapeutic potential as novel analgesic medicinal substances

    Role of the Guanidinium Groups in Ligand–Receptor Binding of Arginine-Containing Short Peptides to the Slow Sodium Channel: Quantitative Approach to Drug Design of Peptide Analgesics

    No full text
    Several arginine-containing short peptides have been shown by the patch-clamp method to effectively modulate the NaV1.8 channel activation gating system, which makes them promising candidates for the role of a novel analgesic medicinal substance. As demonstrated by the organotypic tissue culture method, all active and inactive peptides studied do not trigger the downstream signaling cascades controlling neurite outgrowth and should not be expected to evoke adverse side effects on the tissue level upon their medicinal administration. The conformational analysis of Ac-RAR-NH2, Ac-RER-NH2, Ac-RAAR-NH2, Ac-REAR-NH2, Ac-RERR-NH2, Ac-REAAR-NH2, Ac-PRERRA-NH2, and Ac-PRARRA-NH2 has made it possible to find the structural parameter, the value of which is correlated with the target physiological effect of arginine-containing short peptides. The distances between the positively charged guanidinium groups of the arginine side chains involved in intermolecular ligand–receptor ion–ion bonds between the attacking peptide molecules and the NaV1.8 channel molecule should fall within a certain range, the lower threshold of which is estimated to be around 9 Å. The distance values have been calculated to be below 9 Å in the inactive peptide molecules, except for Ac-RER-NH2, and in the range of 9–12 Å in the active peptide molecules

    Effect of Cholecalciferol Supplementation on the Clinical Features and Inflammatory Markers in Hospitalized COVID-19 Patients: A Randomized, Open-Label, Single-Center Study

    No full text
    Recent studies showed that a low 25-hydroxyvitamin D (25(OH)D) level was associated with a higher risk of morbidity and severe course of COVID-19. Our study aimed to evaluate the effects of cholecalciferol supplementation on the clinical features and inflammatory markers in patients with COVID-19. A serum 25(OH)D level was determined in 311 COVID-19 patients. Among them, 129 patients were then randomized into two groups with similar concomitant medication. Group I (n = 56) received a bolus of cholecalciferol at a dose of 50,000 IU on the first and the eighth days of hospitalization. Patients from Group II (n = 54) did not receive the supplementation. We found significant differences between groups with the preferential increase in serum 25(OH)D level and Δ 25(OH)D in Group I on the ninth day of hospitalization (p p = 0.006); we did not observe other clinical benefits in patients receiving an oral bolus of cholecalciferol. Moreover, in Group I, neutrophil and lymphocyte counts were significantly higher (p = 0.04; p = 0.02), while the C-reactive protein level was significantly lower on the ninth day of hospitalization (p = 0.02). Patients with supplementation of 100,000 IU of cholecalciferol, compared to those without supplementation, showed a decrease in the frequencies of CD38++CD27 transitional and CD27−CD38+ mature naive B cells (p = 0.006 and p = 0.02) and an increase in the level of CD27−CD38− DN B cells (p = 0.02). Thus, the rise in serum 25(OH)D level caused by vitamin D supplementation in vitamin D insufficient and deficient patients may positively affect immune status and hence the course of COVID-19
    corecore