2,001 research outputs found
Towards understanding the probability of ground states in even-even many-body systems
For single- shells with and 11/2, we relate the large
probability of ground states to the largest (smallest) coefficients
, where is the particle number, is the seniority, is an
additional quantum number, and is the angular momentum of the state.
Interesting regularities of the probabilities of ground states are
noticed and discussed for 4-particle systems. Several counter examples of the
ground state (0GS) predominance are noticed for the first time.Comment: 5 pages, 1 figure. Phys. Rev. C64, in pres
Energy Centroids of Spin States by Random Two-body Interactions
In this paper we study the behavior of energy centroids (denoted as
) of spin states in the presence of random two-body
interactions, for systems ranging from very simple systems (e.g. single-
shell for very small ) to very complicated systems (e.g., many- shells
with different parities and with isospin degree of freedom). Regularities of
's discussed in terms of the so-called geometric chaoticity (or
quasi-randomness of two-body coefficients of fractional parentage) in earlier
works are found to hold even for very simple systems in which one cannot assume
the geometric chaoticity. It is shown that the inclusion of isospin and parity
does not "break" the regularities of 's.Comment: four figures. to appear in Physical Review
Perovskite Manganites Hosting Versatile Multiferroic Phases with Symmetric and Antisymmetric Exchange Strictions
Complete magnetoelectric (ME) phase diagrams of orthorhombic MnO
with and without magnetic moments on the ions have been established. Three
kinds of multiferroic ground states, the -cycloidal, the -cycloidal,
and the collinear -type phases, have been identified by the distinct ME
responses. The electric polarization of the -type phase dominated by the
symmetric spin exchange () is more than 10 times as
large as that of the -cycloidal phase dominated by the antisymmetric one
(), and the ME response is enhanced near the
bicritical phase boundary between these multiferroic phases of different
origins. These findings will provide an important clue for the development of
the magnetically induced multiferroics.Comment: 5 pages, 3 figure
Lattice-form dependent orbital shape and charge disproportionation in charge- and orbital-ordered manganites
The orbital shapes and charge disproportionations at nominal Mn and
Mn sites for the charge- and orbital-ordered phases have been studied on
half-doped manganites Pr(SrCa)MnO and
EuCaMnO with double-layer and single-layer Mn-O networks,
respectively, by means of x-ray structural analyses, in comparison with
PrCaMnO with the pseudo cubic network. In a single-layer
EuCaMnO system, the ()/()-type orbital
shape is observed, while the ()/()-type orbital shape in a
pseudo cubic PrCaMnO system. In a double-layer
Pr(SrCa)MnO system, the orbital shape is found to
undergo a large change upon thermally induced rotation of orbital stripe.
Furthermore, clear charge disproportionation is observed for the pseudo cubic
and double-layer systems, while not in the single-layer system. These results
indicate that the orbital shape and charge disproportionation are sensitive to
the dimension of Mn-O network.Comment: 12 page, 5 figures, 11 table
Classification of states of single- fermions with -pairing interaction
In this paper we show that a system of three fermions is exactly solvable for
the case of a single- in the presence of an angular momentum- pairing
interaction. On the basis of the solutions for this system, we obtain new sum
rules for six- symbols. It is also found that the "non-integer" eigenvalues
of three fermions with angular momentum around the maximum appear as
"non-integer" eigenvalues of four fermions when is around (or larger than)
and the Hamiltonian contains only an interaction between pairs of
fermions coupled to spin . This pattern is also found in
five and six fermion systems. A boson system with spin exhibits a similar
pattern.Comment: to be published in Physical Review
General pairing interactions and pair truncation approximations for fermions in a single-j shell
We investigate Hamiltonians with attractive interactions between pairs of
fermions coupled to angular momentum J. We show that pairs with spin J are
reasonable building blocks for the low-lying states. For systems with only a J
= Jmax pairing interaction, eigenvalues are found to be approximately integers
for a large array of states, in particular for those with total angular momenta
I le 2j. For I=0 eigenstates of four fermions in a single-j shell we show that
there is only one non-zero eigenvalue. We address these observations using the
nucleon pair approximation of the shell model and relate our results with a
number of currently interesting problems.Comment: a latex text file and 2 figures, to be publishe
Residual proton-neutron interactions and the scheme
We investigate the correlation between integrated proton-neutron interactions
obtained by using the up-to-date experimental data of binding energies and the
, the product of valence proton number and valence neutron
number with respect to the nearest doubly closed nucleus. We make corrections
on a previously suggested formula for the integrated proton-neutron
interaction. Our results demonstrate a nice, nearly linear, correlation between
the integrated p-n interaction and , which provides us
with a firm foundation of the applicability of the scheme
to nuclei far from the stability line.Comment: four pages, three figures, Physical Review C, in pres
Nuclear Mass Dependence of Chaotic Dynamics in Ginocchio Model
The chaotic dynamics in nuclear collective motion is studied in the framework
of a schematic shell model which has only monopole and quadrupole degrees of
freedom. The model is shown to reproduce the experimentally observed global
trend toward less chaotic motion in heavier nuclei. The relation between
current approach and the earlier studies with bosonic models is discussed.Comment: 11 Page REVTeX file, 2 postscript figures, uuencode
- …