685 research outputs found
Anisotropic Thermal Conduction in Supernova Remnants: Relevance to Hot Gas Filling Factors in the Magnetized ISM
We explore the importance of anisotropic thermal conduction in the evolution
of supernova remnants via numerical simulations. The mean temperature of the
bubble of hot gas is decreased by a factor of ~3 compared to simulations
without thermal conduction, together with an increase in the mean density of
hot gas by a similar factor. Thus, thermal conduction greatly reduces the
volume of hot gas produced over the life of the remnant. This underscores the
importance of thermal conduction in estimating the hot gas filling fraction and
emissivities in high-stage ions in Galactic and proto-galactic ISMs.Comment: Submitted to Astrophysical Journal Letters. 4 pages, 3 figure
Exact spin dynamics of the 1/r^2 supersymmetric t-J model in a magnetic field
The dynamical spin structure factor S^{zz}(Q,omega) in the small momentum
region is derived analytically for the one-dimensional supersymmetric t-J model
with 1/r^2 interaction. Strong spin-charge separation is found in the spin
dynamics. The structure factor S^{zz}(Q,omega) with a given spin polarization
does not depend on the electron density in the small momentum region. In the
thermodynamic limit, only two spinons and one antispinon (magnon) contribute to
S^{zz}(Q,omega). These results are derived via solution of the SU(2,1)
Sutherland model in the strong coupling limit.Comment: 20 pages, 8 figures. Accepted for publication in J.Phys.
Basic properties of three-leg Heisenberg tube
We study three-leg antiferromagnetic Heisenberg model with the periodic
boundary conditions in the rung direction. Since the rungs form regular
triangles, spin frustration is induced. We use the density-matrix
renormalization group method to investigate the ground state. We find that the
spin excitations are always gapped to remove the spin frustration as long as
the rung coupling is nonzero. We also visibly confirm spin-Peierls dimerization
order in the leg direction. Both the spin gap and the dimerization order are
basically enhanced as the rung coupling increases.Comment: 4 pages, 2 figure
Derivation of Green's Function of Spin Calogero-Sutherland Model by Uglov's Method
Hole propagator of spin 1/2 Calogero-Sutherland model is derived using
Uglov's method, which maps the exact eigenfunctions of the model, called
Yangian Gelfand-Zetlin basis, to a limit of Macdonald polynomials (gl_2-Jack
polynomials). To apply this mapping method to the calculation of 1-particle
Green's function, we confirm that the sum of the field annihilation operator on
Yangian Gelfand-Zetlin basis is transformed to the field annihilation operator
on gl_2-Jack polynomials by the mapping. The resultant expression for hole
propagator for finite-size system is written in terms of renormalized momenta
and spin of quasi-holes and the expression in the thermodynamic limit coincides
with the earlier result derived by another method. We also discuss the
singularity of the spectral function for a specific coupling parameter where
the hole propagator of spin Calogero-Sutherland model becomes equivalent to
dynamical colour correlation function of SU(3) Haldane-Shastry model.Comment: 36 pages, 8 figure
Compound eyes of the small white butterfly Pieris rapae have three distinct classes of red photoreceptors
The two subspecies of the small white butterfly, the European Pieris rapae rapae and the Asian P. r. crucivora, differ in wing colouration. Under ultraviolet light, the wings of both male and female P. r. rapae appear dark, whereas the wings of male P. r. crucivora are dark and those of females are bright. It has been hypothesized that these sexually dimorphic wing reflections in P. r. crucivora may have induced the evolution of a fluorescing-screening pigment in the violet-opsin-expressing photoreceptors of males, thus facilitating greater wavelength discrimination near 400nm. Comparing the compound eyes of the two subspecies using genetic, microscopical, spectrographic, and histological methods revealed no differences that would meaningfully affect photoreceptor sensitivity, suggesting that the fluorescing-screening pigment did not evolve in response to sexually dimorphic wing reflections. Our investigation further revealed that (i) the peri-rhabdomal reddish-screening pigments differ among the three ommatidial types; (ii) each of the ommatidial types exhibits a unique class of red photoreceptor with a distinct spectral peak; and (iii) the blue, green, and red photoreceptors of P. rapae exhibit a polarization sensitivity >2, with red photoreceptors allowing for a two-channel opponency form of polarization sensitivity
Collective Antenna Effects in the Terahertz and Infrared Response of Highly Aligned Carbon Nanotube Arrays
We study macroscopically-aligned single-wall carbon nanotube arrays with
uniform lengths via polarization-dependent terahertz and infrared transmission
spectroscopy. Polarization anisotropy is extreme at frequencies less than
3 THz with no sign of attenuation when the polarization is perpendicular
to the alignment direction. The attenuation for both parallel and perpendicular
polarizations increases with increasing frequency, exhibiting a pronounced and
broad peak around 10 THz in the parallel case. We model the electromagnetic
response of the sample by taking into account both radiative scattering and
absorption losses. We show that our sample acts as an effective antenna due to
the high degree of alignment, exhibiting much larger radiative scattering than
absorption in the mid/far-infrared range. Our calculated attenuation spectrum
clearly shows a non-Drude peak at 10 THz in agreement with the
experiment.Comment: 5 pages, 5 figure
Interaction and thermodynamics of spinons in the XX chain
The mapping between the fermion and spinon compositions of eigenstates in the
one-dimensional spin-1/2 XX model on a lattice with N sites is used to describe
the spinon interaction from two different perspectives: (i) For finite N the
energy of all eigenstates is expressed as a function of spinon momenta and
spinon spins, which, in turn, are solutions of a set of Bethe ansatz equations.
The latter are the basis of an exact thermodynamic analysis in the spinon
representation of the XX model. (ii) For N -> infinity the energy per site of
spinon configurations involving any number of spinon orbitals is expressed as a
function of reduced variables representing momentum, filling, and magnetization
of each orbital. The spins of spinons in a single orbital are found to be
coupled in a manner well described by an Ising-like equivalent-neighbor
interaction, switching from ferromagnetic to antiferromagnetic as the filling
exceeds a critical level. Comparisons are made with results for the
Haldane-Shastry model.Comment: 16 pages, 3 figure
A Survey of Hydroxyl Toward Supernova Remnants: Evidence for Extended 1720 MHz Maser Emission
We present the results of GBT observations of all four ground-state hydroxyl
(OH) transitions toward 15 supernova remnants (SNRs) which show OH(1720 MHz)
maser emission. This species of maser is well established as an excellent
tracer of an ongoing interaction between the SNR and dense molecular material.
For the majority of these objects we detect significantly higher flux densities
with a single dish than has been reported with interferometric observations. We
infer that spatially extended, low level maser emission is a common phenomenon
that traces the large-scale interaction in maser-emitting SNRs. Additionally we
use a collisional pumping model to fit the physical conditions under which OH
is excited behind the SNR shock front. We find the observed OH gas associated
with the SNR interaction having columns less than approximately 10^17 per
square cm, temperatures of 20 to 125 K, and densities 10^5 per cubic cm.Comment: 24 pages, 23 figures, Accepted to ApJ, March 26, 2008; v2 - added
Figure 6, minor clarifications to text in Sections 3 and
Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases
We report on the observation of collective radiative decay, or superradiance,
of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in
GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay
rate of coherent CR oscillations increases linearly with the electron density
in a wide range, which is a hallmark of superradiant damping. Our fully quantum
mechanical theory provides a universal formula for the decay rate, which
reproduces our experimental data without any adjustable parameter. These
results firmly establish the many-body nature of CR decoherence in this system,
despite the fact that the CR frequency is immune to electron-electron
interactions due to Kohn's theorem.Comment: 5 pages, 4 figure
- …