4 research outputs found

    High Resolution Monitoring of Seawater Intrusion in a Multi-Aquifer System-Implementation of a New Downhole Geophysical Tool

    No full text
    Monitoring of seawater intrusion is extremely important for the management of coastal aquifers, and therefore requires reliable and high-frequency monitoring tools. This paper describes the use of a new near field and downhole geophysical tool that monitors seawater intrusion in boreholes with high vertical resolution. This sensor is further used to study the impact of pumping on water electrical conductivity profiles (ECP) at the fresh-saline water interface. The new device was installed in a confined calcareous sandstone aquifer along the northern Israeli coast. The site includes two monitoring wells and one pumping well located at distances of 50, 75 and 125 m from shoreline, respectively. The new geophysical tool, called the subsurface monitoring device (SMD), was examined and compared to water an electric conductivity profiler (ECP) and a conductivity temperature depth (CTD) driver’s data. All methods show similar salinity trends, and changes in pumping regime were clearly identified with both the SMD and CTD. The advantage of using the SMD tool is the high temporal and spatial resolution measurement, which is transferred via internet and can be analyzed and interpreted in real time. Another advantage of the SMD is that it measures the electrical resistivity of the aquifer mostly outside the well, while both water ECP and the CTD measure in-well electrical conductivity; therefore, are subjected to the artefact of vertical flow in the well. Accordingly, while the CTD shows an immediate and sharp response when pumping is stopped, the SMD provides a gradual electric conductivity (EC) change, demonstrating that stability is reached just after a few days, which illustrates, more precisely, the hydrological response of the aquifer

    Late-Pleistocene evolution of the continental shelf of central Israel, a case study from Hadera

    No full text
    Sea-level fluctuations are a dominant mechanism that control coastal environmental changes through time. This is especially the case for the successive regressions and transgressions over the last interglacial cycle, which have shaped the deposition, preservation and erosion patterns of unconsolidated sediments currently submerged on continental shelves. The current study focuses on creating an integrated marine and terrestrial geophysical and litho-stratigraphic framework of the coastal zone of Hadera, north-central Israel. This research presents a case study, investigating the changing sedimentological units in the study area. Analysis suggest these represent various coastal environments and were deposited during times of lower than present sea level and during the later stages of the Holocene transgression.A multi-disciplinary approach was applied by compiling existing elevation raster grids, bathymetric charts, one hundred lithological borehole data-sets, and a 110 km-long sub-bottom geophysical survey. Based on seismic stratigraphic analysis, observed geometries, and reflective appearances, six bounding surfaces and seven seismic units were identified and characterized. These seismic units have been correlated with the available borehole data to produce a chronologically constrained lithostratigraphy for the area. This approach allowed us to propose a relationship between the lithological units and sea-level change and thus enable the reconstruction of Hadera coastal evolution over the last ~ 100 ka. This reconstruction suggests that the stratigraphy is dominated by lowstand aeolian and fluvial terrestrial environments, subsequently transgressed during the Holocene. The results of this study provide a valuable framework for future national strategic shallow-water infrastructure construction and also for the possible locations of past human settlements in relation to coastal evolution through time

    Infrastructure Pattern Discovery in Configuration Management Databases via Large Sparse Graph Mining

    No full text
    A configuration management database (CMDB) can be considered to be a large graph representing the IT infrastructure entities and their inter-relationships. Mining such graphs is challenging because they are large, complex, and multi-attributed, and have many repeated labels. These characteristics pose challenges for graph mining algorithms, due tothe increased cost of subgraph isomorphism (for support counting), and graph isomorphism (for eliminating duplicate patterns). The notion of pattern frequency or support is also more challenging in a single graph, since it has to be defined in terms of the number of its (potentially, exponentially many) embeddings. We present CMDB-Miner, a novel two-step methodfor mininginfrastructurepatternsfrom CMDBgraphs. It first samples the set of maximal frequent patterns, and then clusters them to extract the representative infrastructure patterns. We demonstrate the effectiveness of CMDB-Miner on real-world CMDB graphs
    corecore