14 research outputs found

    Data diverse fault tolerant architecture for component based systems

    No full text

    Layer Width Engineering in Carbon Nitride for Enhanced Exciton Dissociation and Solar Fuel Generation

    No full text
    Photocatalytic H2 and H2O2 production using graphitic carbon nitride (g-C3N4) offers promising renewable energy prospects but suffers from rapid exciton recombination, which can be mitigated by K+-insertion-driven enhanced interlayer electron–hole separation. However, limited K+ insertion remains a bottleneck due to inadequate ion-insertion channels. Herein, we present an engineered g-C3N4 with expanded layer widths for facile ion diffusion, increasing K+ insertion by >250%. This leads to significant layer contraction post K+ insertion (∼3%, 1.5 times larger than before) due to stronger electrostatic attraction, resulting in weaker exciton binding energy (91 meV, ∼57% diminished), near-complete suppression of photoluminescence, and doubling of excited-state electron lifetime as revealed by femtosecond decay kinetics. These improvements led to ∼25 and ∼140 times increments over bare g-C3N4 in H2 and H2O2 production rates, respectively, under visible light. Considering the earth-abundant constituents of g-C3N4, our work establishes a novel design strategy for a highly active, sustainable photocatalyst

    A novel Vi-diphtheria toxoid typhoid conjugate vaccine is safe and can induce immunogenicity in healthy Indonesian children 2–11 years: a phase II preliminary report

    No full text
    Abstract Background Typhoid fever caused by Salmonella enteric serovar Typhi (S. Typhi) is a common cause of morbidity in the world. In 2017, 14.3 million cases of Typhoid and paratyphoid fever occurred globally. School age children between 3 to 19 years old are the most affected. Poor sanitation and multi drug resistance have increased the need for vaccines to reduce the global burden of disease. Based on previous trials, typhoid conjugate vaccines have longer- lasting protection, higher efficacy, require fewer doses and are suitable from infancy that allows them to be incorporated into the routine immunization program. Our previous phase I trial proved that a novel Vi-DT typhoid conjugate vaccine is safe and immunogenic in subjects 2–5 and 18–40 years. Our phase II trial consisted of subjects 6 months to 40 years. Our previously published paper on subjects 6 to &lt; 24 months proved that this vaccine is safe and immunogenic for this age group. Therefore, with this paper we aimed to evaluate the safety and immunogenicity in children 2–11 years. Methods A randomized, observer-blind, superiority design of Vi-DT Typhoid conjugate vaccine compared to Vi-polysaccharide vaccine (Vi-PS) phase II study was conducted from October 2018 to December 2018 where 200 subjects aged 2–11 years were recruited. A blood sample prior to vaccination was taken, followed by administration of a single dose of either test vaccine (Vi-DT) or control vaccine (Vi-PS) and then a second blood sample was collected 28 days post vaccination. Adverse reactions were assessed and antibody increment was evaluated at 28 days post vaccination through collected serum sample. Results Pain was the most common local reaction. Fever and muscle pain were the most common systemic reactions. Both Vi-DT and Vi-PS groups had roughly the same number of adverse reactions. At 28 days post vaccination, 100% of subjects in the Vi-DT group and 93% of subjects in the Vi-PS group produced antibody increment ≥4 times. The Vi-DT group produced a higher GMT as compared to Vi-PS. Conclusion Vi-DT vaccine is safe and immunogenic in children 2–11 years old. Trial registration Trial registration number: NCT03460405. </jats:sec

    A non-inferiority trial comparing two killed, whole cell, oral cholera vaccines (Cholvax vs. Shanchol) in Dhaka, Bangladesh

    No full text
    Bangladesh remains cholera endemic with biannual seasonal peaks causing epidemics. At least 300,000 severe cases and over 4,500 deaths occur each year. The available oral cholera vaccines have not yet been adopted for cholera control in Bangladesh due to insufficient number of doses available for endemic control. With a public private partnership, icddr,b initiated a collaboration between vaccine manufacturers in Bangladesh and abroad. A locally manufactured Oral Cholera Vaccine (OCV) named Cholvax became available for testing in Bangladesh. We evaluated the safety and immunogenicity of this locally produced Cholvax (Incepta Vaccine Ltd) inexpensive OCV comparatively to Shanchol (Shantha Biotechnics-Sanofi Pasteur) which is licensed in several countries. We conducted a randomized non-inferiority clinical trial of bivalent, killed oral whole-cell cholera vaccine Cholvax vs. Shanchol in the cholera-endemic area of Mirpur, Dhaka, among three different age cohorts (1–5, 6–17 and 18–45 years) between April 2016 and April 2017. Two vaccine doses were given at 14 days apart to 2,052 healthy participants. No vaccine-related serious adverse events were reported. There were no significant differences in the frequency of solicited (7.31% vs. 6.73%) and unsolicited (1.46% vs. 1.07%) adverse events reported between the Cholvax and Shanchol groups. Vibriocidal antibody responses among the overall population for O1 Ogawa (81% vs. 77%) and O1 Inaba (83% vs. 84%) serotypes showed that Cholvax was non-inferior to Shanchol, with the non-inferiority margin of −10%. For O1 Inaba, GMT was 462.60 (Test group), 450.84 (Comparator group) with GMR 1.02(95% CI: 0.92, 1.13). For O1 Ogawa, GMT was 419.64 (Test group), 387.22 (Comparator group) with GMR 1.12 (95% CI: 1.02, 1.23). Cholvax was safe and non-inferior to Shanchol in terms of immunogenicity in the different age groups. These results support public use of Cholvax to contribute for reduction of the cholera burden in Bangladesh. ClinicalTrials.gov number: NCT027425581.Full Tex

    Immune persistence and response to booster dose of Vi-DT vaccine at 27.5 months post-first dose

    No full text
    AbstractVaccination with typhoid conjugate vaccines (TCV) is a major part of typhoid prevention. However, little is known about long-term immune persistence following vaccination with TCVs. In this phase-2, randomized double-blind trial (NCT03527355), 285 children aged 6–23 months were randomized to one of three groups: (1) the group that received a first dose of Vi polysaccharide conjugated to diphtheria-toxoid (Vi-DT) vaccine followed by an “early booster” at 24 weeks, (2) the group that which received a first dose of Vi-DT followed by a “late booster” at 96 or 110 weeks, and (3) comparator group. Safety and immunogenicity of anti-Vi IgG GMTs were assessed at weeks 0, 4, 24, 28, 60, 96, 110, and 114 since the first dose. Here, we describe persistence of immune responses at weeks 60, 96, 110, and 114 post first dose. The anti-Vi IgG seroconversion rate after 27.5 months of follow-up was 88.16% (95% CI: 79.00, 93.64) in late-booster and 94.76% (95% CI: 86.91, 97.88) in early booster Vi-DT groups (p = 0.081). Whereas anti-Vi IgG GMTs were significantly higher in the early booster group (11.95 [95% CI: 9.65, 14.81]) than prebooster GMTs in the late booster group (5.50 [95% CI: 4.44, 6.80], p &lt; 0.0001). GMT in the late booster group significantly increased to 351.76 (95% CI: 265.01, 466.93) (p &lt; 0.0001) when measured 4 weeks after they received their “late-booster” shot. In conclusion, late booster dosing with Vi-DT at 27.5 months post first dose was safe and elicited robust anti-Vi IgG immune responses. Anti-Vi IgG seroconversion rates were persistently comparable in early and late-booster Vi-DT groups.</jats:p
    corecore