15 research outputs found
Quantum Interference Effects in Slowly Rotating NUT Space-time
General relativistic quantum interference effects in the slowly rotating NUT
space-time as the Sagnac effect and the phase shift effect of interfering
particle in neutron interferometer are considered. It was found that in the
case of the Sagnac effect the influence of NUT parameter is becoming important
due to the fact that the angular velocity of the locally non rotating observer
must be larger than one in the Kerr space-time. In the case of neutron
interferometry it is found that due to the presence of NUT-parameter an
additional term in the phase shift of interfering particle emerges. This term
can be, in principle, detected by sensitive interferometer and derived results
can be further used in experiments to detect the gravitomagnetic charge.
Finally, as an example, we apply the obtained results to the calculation of the
UCN (ultra-cold neutrons) energy level modification in the slowly rotating NUT
space-time.Comment: 11 pages, 1 figure, accepted for publication in Int. J. Mod. Phys. D;
added reference
Population of isomers in decay of the giant dipole resonance
The value of an isomeric ratio (IR) in N=81 isotones (Ba, Ce,
Nd and Sm) is studied by means of the ( reaction.
This quantity measures a probability to populate the isomeric state in respect
to the ground state population. In ( reactions, the giant dipole
resonance (GDR) is excited and after its decay by a neutron emission, the
nucleus has an excitation energy of a few MeV. The forthcoming decay
by direct or cascade transitions deexcites the nucleus into an isomeric or
ground state. It has been observed experimentally that the IR for Ba
and Ce equals about 0.13 while in two heavier isotones it is even less
than half the size. To explain this effect, the structure of the excited states
in the energy region up to 6.5 MeV has been calculated within the Quasiparticle
Phonon Model. Many states are found connected to the ground and isomeric states
by , and transitions. The single-particle component of the wave
function is responsible for the large values of the transitions. The calculated
value of the isomeric ratio is in very good agreement with the experimental
data for all isotones. A slightly different value of maximum energy with which
the nuclei rest after neutron decay of the GDR is responsible for the reported
effect of the A-dependence of the IR.Comment: 16 pages, 4 Fig