11 research outputs found

    Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature

    Get PDF
    Introduction: The preterm born infant’s ability to regulate its cerebral blood flow (CBF) is crucial in preventing secondary ischemic and hemorrhagic damage in the developing brain. The relationship between arterial blood pressure (ABP) and CBF estimates, such as regional cerebral oxygenation as measured by near-infrared spectroscopy (NIRS), is an attractive option for continuous non-invasive assessment of cerebrovascular autoregulation. Areas covered: The authors performed a literature search to provide an overview of the current literature on various current clinical practices and methods to measure cerebrovascular autoregulation in the preterm infant by NIRS. The authors focused on various aspects: Characteristics of patient cohorts, surrogate measures for cerebral perfusion pressure, NIRS devices and their accompanying parameters, definitions for impaired cerebrovascular autoregulation, methods of measurements and clinical implications. Expert commentary: Autoregulation research in preterm infants has reported many methods for measuring autoregulation using different mathematical models, signal processing and data requirements. At present, it remains unclear which NIRS signals and algorithms should be used that result in the most accurate and clinically relevant assessment of cerebrovascular autoregulation. Future studies should focus on optimizing strategies for cerebrovascular autoregulation assessment in preterm infants in order to develop autoregulation-based cerebral perfusion treatment strategies

    Optic nerve sheath diameter assessment by neurosonology: a review of methodologic discrepancies

    Get PDF
    Background and Purpose Reported cutoff values of the optic nerve sheath diameter (ONSD) for the diagnosis of elevated intracranial pressure (ICP) are inconsistent. This hampers ONSD as a possible noninvasive bedside monitoring tool for ICP. Because the influence of methodological differences on variations in cutoff values is unknown, we performed a narrative review to identify discrepancies in ONSD assessment methodologies and to investigate their effect on reported ONSD values. Methods We used a structured and quantitative approach in which each ONSD methodology found in the reviewed articles was categorized based on the characteristic appearance of the ultrasound images and ultrasound marker placement. Subsequently, we investigated the influence of the different methodologies on ONSD values by organizing the ONSDs with respect to these categories. Results In a total of 63 eligible articles, we could determine the applied ONSD assessment methodology. Reported ultrasound images either showed the optic nerve and its sheath as a dark region with hyperechoic striped band at its edges or as a single dark region surrounded by lighter retrobulbar fat. Four different ultrasound marker positions were used to delineate the optic nerve sheath, which resulted in different ONSD values and more importantly, different sensitivities to changes in ICP. Conclusions Based on our observations, we recommend to place ultrasound markers at the outer edges of the hyperechoic striped bands or at the transitions from the single dark region to the hyperechoic retrobulbar fat because these locations yielded the highest sensitivity of ONSD measurements for increased ICP

    Visualisation of the 'Optimal Cerebral Perfusion' Landscape in Severe Traumatic Brain Injury Patients.

    Get PDF
    OBJECTIVE: An 'optimal' cerebral perfusion pressure (CPPopt) can be defined as the point on the CPP scale corresponding to the greatest autoregulatory capacity. This can be established by examining the pressure reactivity index PRx-CPP relationship, which is approximately U-shaped but suffers from noise and missing data. In this paper, we present a method for plotting the whole PRx-CPP relationship curve against time in the form of a colour-coded map depicting the 'landscape' of that relationship extending back for several hours and to display this robustly at the bedside.This is a short version of a full paper recently published in Critical Care Medicine (2016) containing some new insights and details of a novel bedside implementation based on a presentation during Intracranial Pressure 2016 Symposium in Boston. METHODS: Recordings from routine monitoring of traumatic brain injury patients were processed using ICM+. Time-averaged means for arterial blood pressure, intracranial pressure, cerebral perfusion pressure (CPP) and pressure reactivity index (PRx) were calculated and stored with time resolution of 1 min. ICM+ functions have been extended to include not just an algorithm of automatic calculation of CPPopt but also the 'CPPopt landscape' chart. RESULTS: Examining the 'CPPopt landscape' allows the clinician to differentiate periods where the autoregulatory range is narrow and needs to be targeted from periods when the patient is generally haemodynamically stable, allowing for more relaxed CPP management. This information would not have been conveyed using the original visualisation approaches. CONCLUSIONS: We describe here a natural extension to the concept of autoregulatory assessment, providing the retrospective 'landscape' of the PRx-CPP relationship extending over the past several hours. We have incorporated such visualisation techniques online in ICM+. The proposed visualisation may facilitate clinical evaluation and use of autoregulation-guided therapy

    Changes in cerebral oxygenation and cerebral blood flow during hemodialysis – A simultaneous near-infrared spectroscopy and positron emission tomography study

    Get PDF
    Near-infrared spectroscopy (NIRS) is used to monitor cerebral tissue oxygenation (rSO2) depending on cerebral blood flow (CBF), cerebral blood volume and blood oxygen content. We explored whether NIRS might be a more easy applicable proxy to [15O]H2O positron emission tomography (PET) for detecting CBF changes during hemodialysis. Furthermore, we compared potential determinants of rSO2 and CBF. In 12 patients aged ≄ 65 years, NIRS and PET were performed simultaneously: before (T1), early after start (T2), and at the end of hemodialysis (T3). Between T1 and T3, the relative change in frontal rSO2 (ΔrSO2) was −8 ± 9% (P = 0.001) and −5 ± 11% (P = 0.08), whereas the relative change in frontal gray matter CBF (ΔCBF) was −11 ± 18% (P = 0.009) and −12 ± 16% (P = 0.007) for the left and right hemisphere, respectively. ΔrSO2 and ΔCBF were weakly correlated for the left (ρ 0.31, P = 0.4), and moderately correlated for the right (ρ 0.69, P = 0.03) hemisphere. The Bland-Altman plot suggested underestimation of ΔCBF by NIRS. Divergent associations of pH, pCO2 and arterial oxygen content with rSO2 were found compared to corresponding associations with CBF. In conclusion, NIRS could be a proxy to PET to detect intradialytic CBF changes, although NIRS and PET capture different physiological parameters of the brain
    corecore