7 research outputs found

    Extracellular Vesicles from Pseudomonas aeruginosa Suppress MHC-Related Molecules in Human Lung Macrophages

    Get PDF
    Pseudomonas aeruginosa, a Gram-negative bacterium, is one of the most common pathogens colonizing the lungs of cystic fibrosis patients. P. aeruginosa secrete extracellular vesicles (EVs) that contain LPS and other virulence factors that modulate the host\u27s innate immune response, leading to an increased local proinflammatory response and reduced pathogen clearance, resulting in chronic infection and ultimately poor patient outcomes. Lung macrophages are the first line of defense in the airway innate immune response to pathogens. Proper host response to bacterial infection requires communication between APC and T cells, ultimately leading to pathogen clearance. In this study, we investigate whether EVs secreted from P. aeruginosa alter MHC Ag expression in lung macrophages, thereby potentially contributing to decreased pathogen clearance. Primary lung macrophages from human subjects were collected via bronchoalveolar lavage and exposed to EVs isolated from P. aeruginosa in vitro. Gene expression was measured with the NanoString nCounter gene expression assay. DNA methylation was measured with the EPIC array platform to assess changes in methylation. P. aeruginosa EVs suppress the expression of 11 different MHC-associated molecules in lung macrophages. Additionally, we show reduced DNA methylation in a regulatory region of gene complement factor B (CFB) as the possible driving mechanism of widespread MHC gene suppression. Our results demonstrate MHC molecule downregulation by P. aeruginosa-derived EVs in lung macrophages, which is consistent with an immune evasion strategy employed by a prokaryote in a host-pathogen interaction, potentially leading to decreased pulmonary bacterial clearance

    Comparative effects of CFTR modulators on phagocytic, metabolic and inflammatory profiles of CF and nonCF macrophages

    No full text
    Abstract Macrophage dysfunction has been well-described in Cystic Fibrosis (CF) and may contribute to bacterial persistence in the lung. Whether CF macrophage dysfunction is related directly to Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) in macrophages or an indirect consequence of chronic inflammation and mucostasis is a subject of ongoing debate. CFTR modulators that restore CFTR function in epithelial cells improve global CF monocyte inflammatory responses but their direct effects on macrophages are less well understood. To address this knowledge gap, we measured phagocytosis, metabolism, and cytokine expression in response to a classical CF pathogen, Pseudomonas aeruginosa in monocyte-derived macrophages (MDM) isolated from CF F508del homozygous subjects and nonCF controls. Unexpectedly, we found that CFTR modulators enhanced phagocytosis in both CF and nonCF cohorts. CFTR triple modulators also inhibited MDM mitochondrial function, consistent with MDM activation. In contrast to studies in humans where CFTR modulators decreased serum inflammatory cytokine levels, modulators did not alter cytokine secretion in our system. Our studies therefore suggest modulator induced metabolic effects may promote bacterial clearance in both CF and nonCF monocyte-derived macrophages

    Exposure to extracellular vesicles from Pseudomonas aeruginosa result in loss of DNA methylation at enhancer and DNase hypersensitive site regions in lung macrophages

    No full text
    Various pathogens use differing strategies to evade host immune response including modulating the host’s epigenome. Here, we investigate if EVs secreted from P. aeruginosa alter DNA methylation in human lung macrophages, thereby potentially contributing to a dysfunctional innate immune response. Using a genome-wide DNA methylation approach, we demonstrate that P. aeruginosa EVs alter certain host cell DNA methylation patterns. We identified 1,185 differentially methylated CpGs (FDR < 0.05), which were significantly enriched for distal DNA regulatory elements including enhancer regions and DNase hypersensitive sites. Notably, all but one of the 1,185 differentially methylated CpGs were hypomethylated in association with EV exposure. Significantly hypomethylated CpGs tracked to genes including AXL, CFB and CCL23. Gene expression analysis identified 310 genes exhibiting significantly altered expression 48 hours post P. aeruginosa EV treatment, with 75 different genes upregulated and 235 genes downregulated. Some CpGs associated with cytokines such as CSF3 displayed strong negative correlations between DNA methylation and gene expression. Our infection model illustrates how secreted products (EVs) from bacteria can alter DNA methylation of the host epigenome. Changes in DNA methylation in distal DNA regulatory regions in turn can modulate cellular gene expression and potential downstream cellular processes

    Genome-wide DNA methylation profiling shows a distinct epigenetic signature associated with lung macrophages in cystic fibrosis

    No full text
    Abstract Background Lung macrophages are major participants in the pulmonary innate immune response. In the cystic fibrosis (CF) lung, the inability of lung macrophages to successfully regulate the exaggerated inflammatory response suggests dysfunctional innate immune cell function. In this study, we aim to gain insight into innate immune cell dysfunction in CF by investigating alterations in DNA methylation in bronchoalveolar lavage (BAL) cells, composed primarily of lung macrophages of CF subjects compared with healthy controls. All analyses were performed using primary alveolar macrophages from human subjects collected via bronchoalveolar lavage. Epigenome-wide DNA methylation was examined via Illumina MethylationEPIC (850 K) array. Targeted next-generation bisulfite sequencing was used to validate selected differentially methylated CpGs. Methylation-based sample classification was performed using the recursively partitioned mixture model (RPMM) and was tested against sample case-control status. Differentially methylated loci were identified by fitting linear models with adjustment of age, sex, estimated cell type proportions, and repeat measurement. Results RPMM class membership was significantly associated with the CF disease status (P = 0.026). One hundred nine CpG loci were differentially methylated in CF BAL cells (all FDR ≤ 0.1). The majority of differentially methylated loci in CF were hypo-methylated and found within non-promoter CpG islands as well as in putative enhancer regions and DNase hyper-sensitive regions. Conclusions These results support a hypothesis that epigenetic changes, specifically DNA methylation at a multitude of gene loci in lung macrophages, may participate, at least in part, in driving dysfunctional innate immune cells in the CF lung

    2003-2004 Research Honors Program Abstracts (for the College of Agriculture and Life Sciences Undergraduates)

    Full text link
    Faculty in the College of Agriculture and Life Sciences at Cornell University mentor and guide undergraduate students who have chosen to pursue a research project and graduate with honors. These abstracts reflect the depth of their scholarship and intellectual ability. The research projects encompass work in animal science, biological science, entomology, landscape studies, natural resources, physical science, plant science, and social science
    corecore