24 research outputs found
Increases in HIV Incidence Following Receptive Anal Intercourse Among Women: A Systematic Review and Meta-analysis.
Receptive anal intercourse (RAI) carries a greater per-act risk of HIV acquisition than receptive vaginal intercourse (RVI) and may influence HIV epidemics driven by heterosexual sex. This systematic review explores the association between RAI and incident HIV among women, globally. We searched Embase and Medline through September 2018 for longitudinal studies reporting crude (cRR) or adjusted (aRR) relative risks of HIV acquisition by RAI practice among women. Of 27,563 articles identified, 17 eligible studies were included. We pooled independent study estimates using random-effects models. Women reporting RAI were more likely to acquire HIV than women not reporting RAI (pooled cRR = 1.56 95% CI 1.03-2.38, N = 18, I2 = 72%; pooled aRR = 2.23, 1.01-4.92, N = 5, I2 = 70%). In subgroup analyses the association was lower for women in Africa (pooled cRR = 1.16, N = 13, I2 = 21%) than outside Africa (pooled cRR = 4.10, N = 5, I2 = 79%) and for high-risk (pooled aRR = 1.69, N = 4, I2 = 63%) than general-risk women (pooled aRR = 8.50, N = 1). Interview method slightly influenced cRR estimates (p value = 0.04). In leave-one-out sensitivity analyses pooled estimates were generally robust to removing individual study estimates. Main limitations included poor exposure definition, incomplete adjustment for confounders, particularly condom use, and use of non-confidential interview methods. More and better data are needed to explain differences in risk by world region and risk population. Women require better counselling and greater choice in prevention modalities that are effective during RVI and RAI
8p22 MTUS1 Gene Product ATIP3 Is a Novel Anti-Mitotic Protein Underexpressed in Invasive Breast Carcinoma of Poor Prognosis
BACKGROUND: Breast cancer is a heterogeneous disease that is not totally eradicated by current therapies. The classification of breast tumors into distinct molecular subtypes by gene profiling and immunodetection of surrogate markers has proven useful for tumor prognosis and prediction of effective targeted treatments. The challenge now is to identify molecular biomarkers that may be of functional relevance for personalized therapy of breast tumors with poor outcome that do not respond to available treatments. The Mitochondrial Tumor Suppressor (MTUS1) gene is an interesting candidate whose expression is reduced in colon, pancreas, ovary and oral cancers. The present study investigates the expression and functional effects of MTUS1 gene products in breast cancer. METHODS AND FINDINGS: By means of gene array analysis, real-time RT-PCR and immunohistochemistry, we show here that MTUS1/ATIP3 is significantly down-regulated in a series of 151 infiltrating breast cancer carcinomas as compared to normal breast tissue. Low levels of ATIP3 correlate with high grade of the tumor and the occurrence of distant metastasis. ATIP3 levels are also significantly reduced in triple negative (ER- PR- HER2-) breast carcinomas, a subgroup of highly proliferative tumors with poor outcome and no available targeted therapy. Functional studies indicate that silencing ATIP3 expression by siRNA increases breast cancer cell proliferation. Conversely, restoring endogenous levels of ATIP3 expression leads to reduced cancer cell proliferation, clonogenicity, anchorage-independent growth, and reduces the incidence and size of xenografts grown in vivo. We provide evidence that ATIP3 associates with the microtubule cytoskeleton and localizes at the centrosomes, mitotic spindle and intercellular bridge during cell division. Accordingly, live cell imaging indicates that ATIP3 expression alters the progression of cell division by promoting prolonged metaphase, thereby leading to a reduced number of cells ungergoing active mitosis. CONCLUSIONS: Our results identify for the first time ATIP3 as a novel microtubule-associated protein whose expression is significantly reduced in highly proliferative breast carcinomas of poor clinical outcome. ATIP3 re-expression limits tumor cell proliferation in vitro and in vivo, suggesting that this protein may represent a novel useful biomarker and an interesting candidate for future targeted therapies of aggressive breast cancer
Etude de la dynamique des microtubules et de l'appareil de Golgi
Les microtubules sont des éléments clés du cytosquelette qui ont, malgré leur nom, une structure très dynamique. Ces longs filaments explorent l espace cytosolique des cellules par un mécanisme appelé instabilité dynamique (des phases de croissance et de décroissance finement régulées), permettant ainsi à la cellule de se déplacer, de se polariser et de se diviser. Ils sont également nécessaires pour contrôler la localisation et la structure des compartiments intracellulaire. Dans ce projet, nous avons utilisé deux approches complémentaires pour étudier la dynamique des microtubules. Dans une première partie, nous avons étudié le processus de polymérisation en utilisant de nouveaux outils de visualisation. Cela nous a permis de proposer un nouveau modèle pour expliquer la dynamique des microtubules. Dans une seconde partie, nous avons analysé le rôle de protéines se liant aux microtubules qui modulent leur polymérisation et leur dépolymérisation. Dans une troisième partie, nous nous sommes intéressés à une nouvelle protéine identifiée comme responsable d une maladie génétique rare : le syndrome de Dyygve-Melchior-Clausen. Nous avons montré que la Dymeclin est une protéine golgienne particulièrement dynamique qui reconnaît un sous ensemble de l appareil de GolgiPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF
CLIPR-59: a protein essential for neuromuscular junction stability during mouse late embryonic development.
International audienceCLIPR-59 is a new member of the cytoplasmic linker proteins (CLIP) family mainly localized to the trans-Golgi network. We show here that Clipr-59 expression in mice is restricted to specific pools of neurons, in particular motoneurons (MNs), and progressively increases from embryonic day 12.5 (E12.5) until the first postnatal days. We generated a Clipr-59 knockout mouse model that presents perinatal lethality due to respiratory defects. Physiological experiments revealed that this altered innervation prevents the normal nerve-elicited contraction of the mutant diaphragm that is reduced both in amplitude and fatigue-resistance at E18.5, despite unaffected functional muscular contractility. Innervation of the mutant diaphragm is not altered until E15.5, but is then partially lost in the most distal parts of the muscle. Ultrastructural observations of neuromuscular junctions (NMJs) in the distal region of the diaphragm reveal a normal organization, but a lower density of nerve terminals capped by terminal Schwann cells in E18.5 mutant when compared with control embryos. Similar defects in NMJ stability, with a hierarchy of severity along the caudo-rostral axis, are also observed in other muscles innervated by facial and spinal MNs in Clipr-59 mutant mice. Clipr-59 deficiency therefore affects axon maintenance but not axon guidance toward muscle targets. Thus, CLIPR-59 is involved in the stabilization of specific motor axons at the NMJ during mouse late embryogenesis and its role is crucial for mouse perinatal development
Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight
Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy
Gene-metabolite networks associated with impediment of bone fracture repair in spaceflight
Adverse effects of spaceflight on musculoskeletal health increase the risk of bone injury and impairment of fracture healing. Its yet elusive molecular comprehension warrants immediate attention, since space travel is becoming more frequent. Here we examined the effects of spaceflight on bone fracture healing using a 2 mm femoral segmental bone defect (SBD) model. Forty, 9-week-old, male C57BL/6J mice were randomized into 4 groups: 1) Sham surgery on Ground (G-Sham); 2) Sham surgery housed in Spaceflight (FLT-Sham); 3) SBD surgery on Ground (G-Surgery); and 4) SBD surgery housed in Spaceflight (FLT-Surgery). Surgery procedures occurred 4 days prior to launch; post-launch, the spaceflight mice were house in the rodent habitats on the International Space Station (ISS) for approximately 4 weeks before euthanasia. Mice remaining on the Earth were subjected to identical housing and experimental conditions. The right femur from half of the spaceflight and ground groups was investigated by micro-computed tomography (µCT). In the remaining mice, the callus regions from surgery groups and corresponding femoral segments in sham mice were probed by global transcriptomic and metabolomic assays. µCT confirmed escalated bone loss in FLT-Sham compared to G-Sham mice. Comparing to their respective on-ground counterparts, the morbidity gene-network signal was inhibited in sham spaceflight mice but activated in the spaceflight callus. µCT analyses of spaceflight callus revealed increased trabecular spacing and decreased trabecular connectivity. Activated apoptotic signals in spaceflight callus were synchronized with inhibited cell migration signals that potentially hindered the wound site to recruit growth factors. A major pro-apoptotic and anti-migration gene network, namely the RANK-NFκB axis, emerged as the central node in spaceflight callus. Concluding, spaceflight suppressed a unique biomolecular mechanism in callus tissue to facilitate a failed regeneration, which merits a customized intervention strategy
Recommended from our members
Increases in HIV Incidence Following Receptive Anal Intercourse Among Women: A Systematic Review and Meta-analysis.
Receptive anal intercourse (RAI) carries a greater per-act risk of HIV acquisition than receptive vaginal intercourse (RVI) and may influence HIV epidemics driven by heterosexual sex. This systematic review explores the association between RAI and incident HIV among women, globally. We searched Embase and Medline through September 2018 for longitudinal studies reporting crude (cRR) or adjusted (aRR) relative risks of HIV acquisition by RAI practice among women. Of 27,563 articles identified, 17 eligible studies were included. We pooled independent study estimates using random-effects models. Women reporting RAI were more likely to acquire HIV than women not reporting RAI (pooled cRR = 1.56 95% CI 1.03-2.38, N = 18, I2 = 72%; pooled aRR = 2.23, 1.01-4.92, N = 5, I2 = 70%). In subgroup analyses the association was lower for women in Africa (pooled cRR = 1.16, N = 13, I2 = 21%) than outside Africa (pooled cRR = 4.10, N = 5, I2 = 79%) and for high-risk (pooled aRR = 1.69, N = 4, I2 = 63%) than general-risk women (pooled aRR = 8.50, N = 1). Interview method slightly influenced cRR estimates (p value = 0.04). In leave-one-out sensitivity analyses pooled estimates were generally robust to removing individual study estimates. Main limitations included poor exposure definition, incomplete adjustment for confounders, particularly condom use, and use of non-confidential interview methods. More and better data are needed to explain differences in risk by world region and risk population. Women require better counselling and greater choice in prevention modalities that are effective during RVI and RAI