166 research outputs found

    Josephson junction arrays with d-wave-induced [phi]-phase-shifts

    Get PDF
    Using thin-¯lm ramp-type Josephson contacts between a high-Tc and a low-Tc super- conductor, experiments to study the dx2¡y2-wave-induced ¼-phase-shift e®ects in planar Josephson arrays have been enabled. The presented studies include the ¯rst experimental realization of various complex Josephson arrays with built-in ¼-phase shifts, investigations on the order parameter symmetry in various high-Tc cuprate superconductors, the ¯rst direct imaging of dx2¡y2-wave induced Josephson current counter\ud °ow, and half-integer magnetic-°ux quantum e®ects in one- and two-dimensional array

    Strong electronic correlation and strain effects at the interfaces between polar and nonpolar complex oxides

    Full text link
    The interface between the polar LaAlO3_3 and nonpolar SrTiO3_3 layers has been shown to exhibit various electronic and magnetic phases such as two dimensional electron gas, superconductivity, magnetism and electronic phase separation. These rich phases are expected due to the strong interplay between charge, spin and orbital degree of freedom at the interface between these complex oxides, leading to the electronic reconstruction in this system. However, until now all of these new properties have been studied extensively based on the interfaces which involve a polar LaAlO3_3 layer. To investigate the role of the A and B cationic sites of the ABO3_3 polar layer, here we study various combinations of polar/nonpolar oxide (NdAlO3_3/SrTiO3_3, PrAlO3_3/SrTiO3_3 and NdGaO3_3/SrTiO3_3) interfaces which are similar in nature to LaAlO3_3/SrTiO3_3 interface. Our results show that all of these new interfaces can also produce 2DEG at their interfaces, supporting the idea that the electronic reconstruction is the driving mechanism for the creation of the 2DEG at these oxide interfaces. Furthermore, the electrical properties of these interfaces are shown to be strongly governed by the interface strain and strong correlation effects provided by the polar layers. Our observations may provide a novel approach to further tune the properties of the 2DEG at the selected polar/nonpolar oxide interfaces.Comment: 5 pages, 4 figure

    Macroscopic quantum tunneling and quasiparticle-tunneling blockade effect in s-wave/d-wave hybrid junctions

    Get PDF
    We have theoretically investigated macroscopic quantum tunneling (MQT) and the influence of nodal quasiparticles and zero energy bound states (ZES) on MQT in s-wave/ d-wave hybrid Josephson junctions. In contrast to d-wave/d-wave junctions, the low-energy quasiparticle dissipation resulting from nodal quasiparticles and ZES is suppressed due to a quasiparticle-tunneling blockade effect in an isotropic s-wave superconductor. Therefore, the inherent dissipation in these junctions is found to be very weak. We have also investigated MQT in a realistic s-wave/d-wave (Nb/Au/YBCO) junction in which Ohmic dissipation in a shunt resistance is stronger than the inherent dissipation and find that MQT is observable within the current experimental technology. This result suggests high potential of s-wave/d-wave hybrid junctions for applications in quantum information devices.Comment: 4 pages, 3 figure

    Atomically flat interface between a single-terminated LaAlO3 substrate and SrTiO3 thin film is insulating

    Full text link
    The surface termination of (100)-oriented LaAlO3 (LAO) single crystals was examined by atomic force microscopy and optimized to produce a single-terminated atomically flat surface by annealing. Then the atomically flat STO film was achieved on a single-terminated LAO substrate, which is expected to be similar to the n-type interface of two-dimensional electron gas (2DEG), i.e., (LaO)-(TiO2). Particularly, that can serve as a mirror structure for the typical 2DEG heterostructure to further clarify the origin of 2DEG. This newly developed interface was determined to be highly insulating. Additionally, this study demonstrates an approach to achieve atomically flat film growth based on LAO substrates.Comment: 4 pages, 3 figure

    RSFQ Circuitry Using Intrinsic π-Phase Shifts

    Get PDF
    The latching of temporary data is essential in the rapid single flux quantum (RSFQ) electronics family. Its pulse-driven nature requires two or more stable states in almost all cells. Storage loops must be designed to have exactly two stable states for binary data representation. In conventional RSFQ such loops are constructed to have two stable states, e.g. by using asymmetric bias currents. This bistability naturally occurs when phase-shifting elements are included in the circuitry, such as pi-Josephson junctions or a pi-phase shift associated with an unconventional (d-wave) order parameter symmetry. Both approaches can be treated completely analogously, giving the same results. We have demonstrated for the first time the correct operation of a logic circuit, a toggle-flip-flop, using rings with an intrinsic pi-phase shift (pi-rings) based on hybrid high-Tc to low-Tc Josephson junctions. Because of their natural bistability these pi-rings improve the device symmetry, enhance operation margins and alleviate the need for bias current lines.\ud \u

    Admixtures to d-wave gap symmetry in untwinned YBa2Cu3O7 superconducting films measured by angle-resolved electron tunneling

    Get PDF
    We report on an \textit{ab}-anisotropy of Jcb/JcaJ_{c \parallel b}/J_{c \parallel a}% \cong 1.8 and IcRnb/IcRna1.2I_{c}R_{n \parallel b}/I_{c}R_{n \parallel a}\cong 1.2 in ramp-edge junctions between untwinned YBa2_{2}Cu3_{3}O7_{7} and ss% -wave Nb. For these junctions, the angle θ\theta with the YBa2_{2}Cu3_{3}O7_{7} crystal b-axis is varied as a single parameter. The RnR_{n}A(θ\theta)-dependence presents 2-fold symmetry. The minima in IcRnI_{c}R_{n} at θ50\theta \cong 50^{\circ} suggest a real s-wave subdominant component and negligible dxyd_{xy}-wave or imaginary s-wave admixtures. The IcRnI_{c}R_{n}(θ\theta)-dependence is well-fitted by 83% dx2y2d_{x^{2}-y^{2}}-, 15% isotropic ss- and 2% anisotropic s-wave order parameter symmetry, consistent with Δb/Δa1.5\Delta_{b}/\Delta_{a} \cong 1.5.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Magnetic-field induced resistivity minimum with in-plane linear magnetoresistance of the Fermi liquid in SrTiO3-x single crystals

    Full text link
    We report novel magnetotransport properties of the low temperature Fermi liquid in SrTiO3-x single crystals. The classical limit dominates the magnetotransport properties for a magnetic field perpendicular to the sample surface and consequently a magnetic-field induced resistivity minimum emerges. While for the field applied in plane and normal to the current, the linear magnetoresistance (MR) starting from small fields (< 0.5 T) appears. The large anisotropy in the transverse MRs reveals the strong surface interlayer scattering due to the large gradient of oxygen vacancy concentration from the surface to the interior of SrTiO3-x single crystals. Moreover, the linear MR in our case was likely due to the inhomogeneity of oxygen vacancies and oxygen vacancy clusters, which could provide experimental evidences for the unusual quantum linear MR proposed by Abrikosov [A. A. Abrikosov, Phys. Rev. B 58, 2788 (1998)].Comment: 5 pages, 4 figure
    corecore