502 research outputs found

    Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry

    Get PDF
    We use narrow-band laser excitation of Yb atoms to substantially enhance the brightness of a cold beam of YbOH, a polyatomic molecule with high sensitivity to physics beyond the standard model (BSM). By exciting atomic Yb to the metastable ³P₁ state in a cryogenic environment, we significantly increase the chemical reaction cross-section for collisions of Yb with reactants. We characterize the dependence of the enhancement on the properties of the laser light, and study the final state distribution of the YbOH products. The resulting bright, cold YbOH beam can be used to increase the statistical sensitivity in searches for new physics utilizing YbOH, such as electron electric dipole moment and nuclear magnetic quadrupole moment experiments. We also perform new quantum chemical calculations that confirm the enhanced reactivity observed in our experiment and compare reaction pathways of Yb(³P) with the reactants H₂O and H₂O₂. More generally, our work presents a broad approach for improving experiments that use cryogenic molecular beams for laser cooling and precision measurement searches of BSM physics

    Coupled-PDMS grafted mesoporous γ-alumina membranes for solvent nanofiltration

    Get PDF
    In this paper grafting of mesoporous c-alumina membranes with hydride terminated polydimethylsiloxane is described. Vinyltriethoxysilane is used as linking agent and tetrakis(vinyldimethylsiloxy)silane as a coupling agent, to create a dense network structure that is grafted in the ceramic pores. Grafting performance of the organic moieties on c-alumina powders was analyzed by FTIR and TGA. The results indicate that grafting reactions were successfully carried out. Contact angle analysis on the grafted membranes showed that grafting occurs on the c-alumina layer and that the resulting membrane surface had a water contact angle of 108 . From permeability and rejection tests using Sudan Black in toluene, ethyl acetate or isopropanol, the use of a coupling agent was found to result in a more dense network structure grafted in the gamma alumina pores. This resulted in a higher rejection for nanofiltration of solvents but at the cost of a lower solvent permeability, when compared with PDMS-grafted alumina membranes where no coupling of PDMS was applied

    Carbon dioxide (CO2 ) geological storage potential of the Bass Basin

    Get PDF
    AbstractEvaluation of the Bass Basin’s suitability for CO2 storage has been undertaken by analysing several key basin analysis elements, including seal capacity and integrity, reservoir quality, petroleum systems modelling and CO2 migration and storage modelling.Seal geometry, capacity and integrity of the Demons Bluff Formation has been investigated to evaluate CO2 containment in the basin. The study revealed good to excellent sealing capacity for the Demons Bluff Formation and for the intraformational seals within the Eastern View Group (EVG). Faults traversing the reservoir/regional seal boundary, as well as faults intersecting the top of the regional seal were evaluated for future risk of reactivation. There is some risk of reactivation associated with N-E striking faults, fortunately these faults are mostly confined to the margins of the basin.Reservoirs of the Upper EVG generally have high porosity and permeability. Hydrocarbon migration and accumulation in the basin were simulated, to examine the petroleum potential of specific reservoirs within the basin. Migration models suggest most of the trapped hydrocarbons occur in the reservoir sands of the Middle EVG. Reservoirs of the Upper EVG were have received little hydrocarbon charge, except for the northeastern part of the basin.CO2 migration paths within reservoirs of the Upper EVG were simulated based on a buoyancy driven migration model. Migration pathways within the Upper EVG and CO2 accumulations under the regional seal were identified. In addition, total available pore volumes for CO2 storage associated with structural traps was calculated at >2 billionm3

    Quantum-Enhanced Metrology for Molecular Symmetry Violation using Decoherence-Free Subspaces

    Full text link
    We propose a method to measure time-reversal symmetry violation in molecules that overcomes the standard quantum limit while leveraging decoherence-free subspaces to mitigate sensitivity to classical noise. The protocol does not require an external electric field, and the entangled states have no first-order sensitivity to static electromagnetic fields as they involve superpositions with zero average lab-frame projection of spins and dipoles. This protocol can be applied with trapped neutral or ionic species, and can be implemented using methods which have been demonstrated experimentally.Comment: 7+11 pages, 3+3 figure

    Direct measurement of high-lying vibrational repumping transitions for molecular laser cooling

    Full text link
    Molecular laser cooling and trapping requires addressing all spontaneous decays to excited vibrational states that occur at the 104105\gtrsim 10^{-4} - 10^{-5} level, which is accomplished by driving repumping transitions out of these states. However, the transitions must first be identified spectroscopically at high-resolution. A typical approach is to prepare molecules in excited vibrational states via optical cycling and pumping, which requires multiple high-power lasers. Here, we demonstrate a general method to perform this spectroscopy without the need for optical cycling. We produce molecules in excited vibrational states by using optically-driven chemical reactions in a cryogenic buffer gas cell, and implement frequency-modulated absorption to perform direct, sensitive, high-resolution spectroscopy. We demonstrate this technique by measuring the spectrum of the A~2Π1/2(1,0,0)X~2Σ+(3,0,0)\tilde{A}^2\Pi_{1/2}(1,0,0)-\tilde{X}^2\Sigma^+(3,0,0) band in 174^{174}YbOH. We identify the specific vibrational repump transitions needed for photon cycling, and combine our data with previous measurements of the A~2Π1/2(1,0,0)X~2Σ+(0,0,0)\tilde{A}^2\Pi_{1/2}(1,0,0)-\tilde{X}^2\Sigma^+(0,0,0) band to determine all of the relevant spectral constants of the X~2Σ+(3,0,0)\tilde{X}^2\Sigma^+(3,0,0) state. This technique achieves high signal-to-noise, can be further improved to measure increasingly high-lying vibrational states, and is applicable to other molecular species favorable for laser cooling.Comment: 14 pages, 5 figure

    Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry

    Get PDF
    We use narrow-band laser excitation of Yb atoms to substantially enhance the brightness of a cold beam of YbOH, a polyatomic molecule with high sensitivity to physics beyond the standard model (BSM). By exciting atomic Yb to the metastable ³P₁ state in a cryogenic environment, we significantly increase the chemical reaction cross-section for collisions of Yb with reactants. We characterize the dependence of the enhancement on the properties of the laser light, and study the final state distribution of the YbOH products. The resulting bright, cold YbOH beam can be used to increase the statistical sensitivity in searches for new physics utilizing YbOH, such as electron electric dipole moment and nuclear magnetic quadrupole moment experiments. We also perform new quantum chemical calculations that confirm the enhanced reactivity observed in our experiment and compare reaction pathways of Yb(³P) with the reactants H₂O and H₂O₂. More generally, our work presents a broad approach for improving experiments that use cryogenic molecular beams for laser cooling and precision measurement searches of BSM physics

    Second order derivatives, Newton method,application to shape optimization

    Get PDF
    We describe a Newton method applied to the evaluation of a critical point of a total energy associated to a shape optimization problem. The key point of this methods is the Hessian of the shape functional. We give an expression of the Hessian as well as the relation with the second-order Eulerian semi-derivative. An application to the electromagnetic shaping of liquid metals process is studied. The unknown surface i represented by piecewise linear closed Jordan curves. Each step of the algorithm requires solving two exterior elliptic boundary values problems. This is done by using an integral representation of solutions on this surfaces. A comparison with a Quasi-Newton algorithm is worked out

    Newton Method in 3-Dimensional Shape Optimization Problems

    Get PDF
    Our goal is to introduce a Newton method to compute the stationary points of a total energy with respect to the shape. We produce a precise description of the second order shape derivative which is given by a symmetrical boundary integral operator, useful for numerical calculations. We apply this method to a particular shape optimization problem, the electromagnetic casting problem. The algorithm to compute the shape gradient and the shape Hessian is adap­ted to a MIMD computer with distributed memory using M.P.I. message passing interface
    corecore