6 research outputs found

    Effect of acupressure on cervical ripening

    Get PDF
    Background: Cervical ripening is one of the main stages of initiation labor. Acupressure in Chinese medicine is considered as an invasive technique, which through reliving oxytocin ripens the cervix. Acupoint Sanyinjiao (SP6) was selected in this study because it is the acupoint selected in gynecology and it is easy for women to locate and apply pressure without medical assistance. Objectives: The aim of this study was to determine the effect of acupressure on cervical ripening. Patients and Methods: In this randomized clinical trial, 150 primigravida with term pregnancy who had referred to Deziani hospital in Gorgan were chosen and divided to three groups: in the first group acupressure was done by the researcher while in the second groups this was performed by the mother her self, and the third group served as a control and only received routine care. For both intervention groups the pressure was applied on Sp6 for about 20 minutes during one to five days. Elements were checked from cervical ripening at 48 and 96 hours after intervention and at the time of hospitalization. The tools for gathering information included demographic characteristics and midwifery history questionnaire, daily records and follow up forms. Content validity was used for validity of tools. Reliability of the observation check-list and physical examination was confirmed by inter-rater scores (inter observer), and daily records by test-re-test. Data was analyzed by analysis of variance (ANOVA), Kruskal-Wallis and Chi-squared tests (P ≀ 0.05). Results: There was a significant difference between mothers’ educations in the three groups. Most of the mothers (59.5%) in the researcher-performed acupressure group had secondary education. Cervical ripening was significantly different between the three groups after 48 hours (P ≀ 0.05), yet there was no significant difference after 96 hours and at the time of admission. Mean Bishop score was enhanced after 48 hours in the researcher-performed acupressure group (P ≀ 0.021) and the self-performed acupressure group (P ≀ 0.007) in comparison to the control group. Conclusions: The results showed that acupressure is a safe technique and leads to cervical ripening. Thus, regarding the desired results that were achieved when mothers applied acupressure themselves, it could be suggested that it is beneficial for mothers to be trained to apply this method at home. © 2015, Iranian Red Crescent Medical Journal

    Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions

    No full text
    © 2022, The Author(s), under exclusive licence to Springer Nature Limited.Alpha particles with energies on the order of megaelectronvolts will be the main source of plasma heating in future magnetic confinement fusion reactors. Instead of heating fuel ions, most of the energy of alpha particles is transferred to electrons in the plasma. Furthermore, alpha particles can also excite Alfvénic instabilities, which were previously considered to be detrimental to the performance of the fusion device. Here we report improved thermal ion confinement in the presence of megaelectronvolts ions and strong fast ion-driven Alfvénic instabilities in recent experiments on the Joint European Torus. Detailed transport analysis of these experiments reveals turbulence suppression through a complex multi-scale mechanism that generates large-scale zonal flows. This holds promise for more economical operation of fusion reactors with dominant alpha particle heating and ultimately cheaper fusion electricity.N

    Disruption prediction with artificial intelligence techniques in tokamak plasmas

    Get PDF
    In nuclear fusion reactors, plasmas are heated to very high temperatures of more than 100 million kelvin and, in so-called tokamaks, they are confined by magnetic fields in the shape of a torus. Light nuclei, such as deuterium and tritium, undergo a fusion reaction that releases energy, making fusion a promising option for a sustainable and clean energy source. Tokamak plasmas, however, are prone to disruptions as a result of a sudden collapse of the system terminating the fusion reactions. As disruptions lead to an abrupt loss of confinement, they can cause irreversible damage to present-day fusion devices and are expected to have a more devastating effect in future devices. Disruptions expected in the next-generation tokamak, ITER, for example, could cause electromagnetic forces larger than the weight of an Airbus A380. Furthermore, the thermal loads in such an event could exceed the melting threshold of the most resistant state-of-the-art materials by more than an order of magnitude. To prevent disruptions or at least mitigate their detrimental effects, empirical models obtained with artificial intelligence methods, of which an overview is given here, are commonly employed to predict their occurrence—and ideally give enough time to introduce counteracting measures
    corecore