179 research outputs found

    Model-Driven Remediation of Dysgraphia

    Get PDF
    TB

    Resting state correlates of picture description informativeness in left vs. right hemisphere chronic stroke

    Get PDF
    IntroductionDespite a growing emphasis on discourse processing in clinical neuroscience, relatively little is known about the neurobiology of discourse production impairments. Individuals with a history of left or right hemisphere stroke can exhibit difficulty with communicating meaningful discourse content, which implies both cerebral hemispheres play a role in this skill. However, the extent to which successful production of discourse content relies on network connections within domain-specific vs. domain-general networks in either hemisphere is unknown.MethodsIn this study, 45 individuals with a history of either left or right hemisphere stroke completed resting state fMRI and the Cookie Theft picture description task.ResultsParticipants did not differ in the total number of content units or the percentage of interpretative content units they produced. Stroke survivors with left hemisphere damage produced significantly fewer content units per second than individuals with right hemisphere stroke. Intrinsic connectivity of the left language network was significantly weaker in the left compared to the right hemisphere stroke group for specific connections. Greater efficiency of communication of picture scene content was associated with stronger left but weaker right frontotemporal connectivity of the language network in patients with a history of left hemisphere (but not right hemisphere) stroke. No significant relationships were found between picture description measures and connectivity of the dorsal attention, default mode, or salience networks or with connections between language and other network regions.DiscussionThese findings add to prior behavioral studies of picture description skills in stroke survivors and provide insight into the role of the language network vs. other intrinsic networks during discourse production

    Lesion Loci of Impaired Affective Prosody: A Systematic Review of Evidence from Stroke

    Get PDF
    Affective prosody, or the changes in rate, rhythm, pitch, and loudness that convey emotion, has long been implicated as a function of the right hemisphere (RH), yet there is a dearth of literature identifying the specific neural regions associated with its processing. The current systematic review aimed to evaluate the evidence on affective prosody localization in the RH. One hundred and ninety articles from 1970 to February 2020 investigating affective prosody comprehension and production in patients with focal brain damage were identified via database searches. Eleven articles met inclusion criteria, passed quality reviews, and were analyzed for affective prosody localization. Acute, subacute, and chronic lesions demonstrated similar profile characteristics. Localized right antero-superior (i.e., dorsal stream) regions contributed to affective prosody production impairments, whereas damage to more postero-lateral (i.e., ventral stream) regions resulted in affective prosody comprehension deficits. This review provides support that distinct RH regions are vital for affective prosody comprehension and production, aligning with literature reporting RH activation for affective prosody processing in healthy adults as well. The impact of study design on resulting interpretations is discussed

    Characterizing Subtypes and Neural Correlates of Receptive Aprosodia in Acute Right Hemisphere Stroke

    Get PDF
    Introduction: Speakers naturally produce prosodic variations depending on their emotional state. Receptive prosody has several processing stages. We aimed to conduct lesion-symptom mapping to determine whether damage (core infarct or hypoperfusion) to specific brain areas was associated with receptive aprosodia or with impairment at different processing stages in individuals with acute right hemisphere stroke. We also aimed to determine whether different subtypes of receptive aprosodia exist that are characterized by distinctive behavioral performance patterns. Methods: Twenty patients with receptive aprosodia following right hemisphere ischemic stroke were enrolled within five days of stroke; clinical imaging was acquired. Participants completed tests of receptive emotional prosody, and tests of each stage of prosodic processing (Stage 1: acoustic analysis; Stage 2: analyzing abstract representations of acoustic characteristics that convey emotion; Stage 3: semantic processing). Emotional facial recognition was also assessed. LASSO regression was used to identify predictors of performance on each behavioral task. Predictors entered into each model included 14 right hemisphere regions, hypoperfusion in four vascular territories as measured using FLAIR hyperintense vessel ratings, lesion volume, age, and education. A k-medoid cluster analysis was used to identify different subtypes of receptive aprosodia based on performance on the behavioral tasks. Results: Impaired receptive emotional prosody and impaired emotional facial expression recognition were both predicted by greater percent damage to the caudate. The k-medoid cluster analysis identified three different subtypes of aprosodia. One group was primarily impaired on Stage 1 processing and primarily had frontotemporal lesions. The second group had a domain-general emotion recognition impairment and maximal lesion overlap in subcortical areas. Finally, the third group was characterized by a Stage 2 processing deficit and had lesion overlap in posterior regions. Conclusions: Subcortical structures, particularly the caudate, play an important role in emotional prosody comprehension. Receptive aprosodia can result from impairments at different processing stages

    A Comparison of Two Methods for MRI Classification of At-Risk Tissue and Core Infarction

    Get PDF
    Objective: To compare how at-risk tissue and core infarction were defined in two major trials that tested the use of MRI in selecting acute stroke patients for endovascular recanalization therapy.Methods: MRIs from 12 patients evaluated for possible endovascular therapy were processed using the methods published from two major trials, MR RESCUE and DEFUSE 2. Specifically, volumes of at-risk tissue and core infarction were generated from each patient’s MRI. MRIs were then classified as to whether or not they met criteria for salvageable tissue: penumbral pattern for MR RESCUE and/or target profile for DEFUSE 2) as defined by each trial.Results: Volumes of at-risk tissue by the two definitions were correlated (p=0.017) while the volumes of core infarct were not (p=0.059). The volume of at-risk tissue was consistently larger when defined by the penumbral pattern than the target profile while the volume of core infarct was consistently larger when defined by the target profile than the penumbral pattern. When these volumes were used to classify the MRI scans, nine out of 12 patients (75%) were classified as having a penumbral pattern, while only 4 out of 12 patients (33%) were classified as having a target profile. Of the 9 patients classified as penumbral pattern, 5 (55%) were classified differently by the target profile.Interpretation: Our analysis found that the MR RESCUE trial defined salvageable tissue in a way which made it more likely for patients be labeled as favorable for treatment. For the cohort of patients examined in this study, had they been enrolled in both trials, most of the patients identified as having salvageable tissue by the MR RESCUE trial would not have been considered to have salvageable tissue in the DEFUSE 2 trial. Caution should be taken in concluding that MRI selection for endovascular therapy is not effective as imaging selection criteria were substantially different between trials

    Explicit Training to Improve Affective Prosody Recognition in Adults with Acute Right Hemisphere Stroke

    Get PDF
    Difficulty recognizing affective prosody (receptive aprosodia) can occur following right hemisphere damage (RHD). Not all individuals spontaneously recover their ability to recognize affective prosody, warranting behavioral intervention. However, there is a dearth of evidence-based receptive aprosodia treatment research in this clinical population. The purpose of the current study was to investigate an explicit training protocol targeting affective prosody recognition in adults with RHD and receptive aprosodia. Eighteen adults with receptive aprosodia due to acute RHD completed affective prosody recognition before and after a short training session that targeted proposed underlying perceptual and conceptual processes. Behavioral impairment and lesion characteristics were investigated as possible influences on training effectiveness. Affective prosody recognition improved following training, and recognition accuracy was higher for pseudo- vs. realword sentences. Perceptual deficits were associated with the most posterior infarcts, conceptual deficits were associated with frontal infarcts, and a combination of perceptual-conceptual deficits were related to temporoparietal and subcortical infarcts. Several right hemisphere ventral stream regions and pathways along with frontal and parietal hypoperfusion predicted training effectiveness. Explicit acoustic-prosodic-emotion training improves affective prosody recognition, but it may not be appropriate for everyone. Factors such as linguistic context and lesion location should be considered when planning prosody training

    Neural Correlates of Syntactic Comprehension: A Longitudinal Study

    Get PDF
    Broca’s area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca’s area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca’s area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca’s area can support syntactic processing after functional reorganization occurs
    corecore