20 research outputs found

    Involvement of amygdalar protein kinase A, but not calcium/calmodulin-dependent protein kinase II, in the reconsolidation of cocaine-related contextual memories in rats

    Get PDF
    Contextual control over drug relapse depends on the successful reconsolidation and retention of context-response-cocaine associations in long-term memory stores. The basolateral amygdala (BLA) plays a critical role in cocaine memory reconsolidation and subsequent drug context-induced cocaine-seeking behavior; however, less is known about the cellular mechanisms of this phenomenon

    Contribution of a Mesocorticolimbic Subcircuit to Drug Context-Induced Reinstatement of Cocaine-Seeking Behavior in Rats

    Get PDF
    Cocaine-seeking behavior triggered by drug-paired environmental context exposure is dependent on orbitofrontal cortex (OFC)–basolateral amygdala (BLA) interactions. Here, we present evidence supporting the hypothesis that dopaminergic input from the ventral tegmental area (VTA) to the OFC critically regulates these interactions. In experiment 1, we employed site-specific pharmacological manipulations to show that dopamine D1-like receptor stimulation in the OFC is required for drug context-induced reinstatement of cocaine-seeking behavior following extinction training in an alternate context. Intra-OFC pretreatment with the dopamine D1-like receptor antagonist, SCH23390, dose-dependently attenuated cocaine-seeking behavior in an anatomically selective manner, without altering motor performance. Furthermore, the effects of SCH23390 could be surmounted by co-administration of a sub-threshold dose of the D1-like receptor agonist, SKF81297. In experiment 2, we examined effects of D1-like receptor antagonism in the OFC on OFC-BLA interactions using a functional disconnection manipulation. Unilateral SCH23390 administration into the OFC plus GABA agonist-induced neural inactivation of the contralateral or ipsilateral BLA disrupted drug context-induced cocaine-seeking behavior relative to vehicle, while independent unilateral manipulations of these brain regions were without effect. Finally, in experiment 3, we used fluorescent retrograde tracers to demonstrate that the VTA, but not the substantia nigra, sends dense intra- and interhemispheric projections to the OFC, which in turn has reciprocal bi-hemispheric connections with the BLA. These findings support that dopaminergic input from the VTA, via dopamine D1-like receptor stimulation in the OFC, is required for OFC–BLA functional interactions. Thus, a VTA–OFC–BLA neural circuit promotes drug context-induced motivated behavior

    Data from: Prescribed fire and conifer removal promote positive understorey vegetation responses in oak woodlands

    No full text
    Fire-prone woodlands and savannas world-wide face management challenges resulting from fire exclusion and subsequent encroachment of fire-sensitive trees. In the Pacific Northwest (USA), Quercus garryana oak woodlands and savannas are threatened by encroachment from the native conifer Pseudotsuga menziesii in the absence of fire. In the Bald Hills of Redwood National Park (California, USA), prescribed fire and conifer removal have been used to restore encroached woodlands. We examined the effects of encroachment and restoration on understorey vegetation, comparing four treatments: prescribed fire, prescribed fire and conifer removal, conifer removal, and encroached (control). Treatments including prescribed fire had the greatest native species richness. These two treatments also had the greatest non-native species richness, at both the site level and the treatment level. Woodlands treated with conifer removal and no prescribed fire were intermediate in species richness and diversity compared to burned treatments and encroached woodlands. Encroached woodlands had diminished richness and diversity compared to all restoration treatments. Non-metric multidimensional scaling (NMS) ordination demonstrated that conifer basal area, conifer litter and fine wood were associated with low species richness and diversity and that elevation and thatch were associated with higher species richness and diversity. Indicator species analysis identified that most native species and non-native species were associated with burned woodlands that were never encroached. Synthesis and applications. Our results suggest that both prescribed fire and conifer removal have benefits for understorey plant communities, increasing species richness, diversity and cover in oak woodlands and shifting understorey communities from forest-associated species to more woodland-associated species. Restoration of remnant Quercus garryana oak woodlands is complicated by the persistence and abundance of non-native herbaceous plants
    corecore