84 research outputs found

    Plastome evolution in hemiparasitic mistletoes

    Get PDF
    Santalales is an order of plants consisting almost entirely of parasites. Some, such as Osyris, are facultative root parasites whereas others, such as Viscum, are obligate stem parasitic mistletoes. Here, we report the complete plastome sequences of one species of Osyris and three species of Viscum, and we investigate the evolutionary aspects of structural changes and changes in gene content in relation to parasitism. Compared with typical angiosperms plastomes, the four Santalales plastomes are all reduced in size (10–22% compared with Vitis), and they have experienced rearrangements, mostly but not exclusively in the border areas of the inverted repeats. Additionally, a number of protein-coding genes (matK, infA, ccsA, rpl33, and all 11 ndh genes) as well as two transfer RNA genes (trnG-UCC and trnV-UAC) have been pseudogenized or completely lost. Most of the remaining plastid genes have a significantly changed selection pattern compared with other dicots, and the relaxed selection of photosynthesis genes is noteworthy. Although gene loss obviously reduces plastome size, intergenic regions were also shortened. As plastome modifications are generally most prominent in Viscum, they are most likely correlated with the increased nutritional dependence on the host compared with Osyris

    Massive gene loss in mistletoe (<em>Viscum</em>, Viscaceae) mitochondria

    Get PDF
    Parasitism is a successful survival strategy across all kingdoms and has evolved repeatedly in angiosperms. Parasitic plants obtain nutrients from other plants and some are agricultural pests. Obligate parasites, which cannot complete their lifecycle without a host, may lack functional photosystems (holoparasites), or have retained photosynthesis (hemiparasites). Plastid genomes are often reduced in parasites, but complete mitochondrial genomes have not been sequenced and their mitochondrial respiratory capacities are largely unknown. The hemiparasitic European mistletoe (Viscum album), known from folklore and postulated therapeutic properties, is a pest in plantations and forestry. We compare the mitochondrial genomes of three Viscum species based on the complete mitochondrial genome of V. album, the first from a parasitic plant. We show that mitochondrial genes encoding proteins of all respiratory complexes are lacking or pseudogenized raising several questions relevant to all parasitic plants: Are any mitochondrial gene functions essential? Do any genes need to be located in the mitochondrial genome or can they all be transferred to the nucleus? Can parasitic plants survive without oxidative phosphorylation by using alternative respiratory pathways? More generally, our study is a step towards understanding how host- and self-perception, host integration and nucleic acid transfer has modified ancestral mitochondrial genomes

    Localized retroprocessing as a model of intron loss in the plant mitochondrial genome

    Get PDF
    Loss of introns in plant mitochondrial genes is commonly explained by retroprocessing. Under this model, an mRNA is reverse transcribed and integrated back into the genome, simultaneously affecting the contents of introns and edited sites. To evaluate the extent to which retroprocessing explains intron loss, we analyzed patterns of intron content and predicted RNA editing for whole mitochondrial genomes of 30 species in the monocot order Alismatales. In this group, we found an unusually high degree of variation in the intron content, even expanding the hitherto known variation among angiosperms. Some species have lost some two-third of the cis-spliced introns. We found a strong correlation between intron content and editing frequency, and detected 27 events in which intron loss is consistent with the presence of nucleotides in an edited state, supporting retroprocessing. However, we also detected seven cases of intron loss not readily being explained by retroprocession. Our analyses are also not consistent with the entire length of a fully processed cDNA copy being integrated into the genome, but instead indicate that retroprocessing usually occurs for only part of the gene. In some cases, several rounds of retroprocessing may explain intron loss in genes completely devoid of introns. A number of taxa retroprocessing seem to be very common and a possibly ongoing process. It affects the entire mitochondrial genome

    Steps of the Replication Cycle of the Viral Haemorrhagic Septicaemia Virus (VHSV) Affecting Its Virulence on Fish

    Get PDF
    The viral haemorrhagic septicaemia virus (VHSV), a single-stranded negative-sense RNA novirhabdovirus affecting a wide range of marine and freshwater fish species, is a main concern for European rainbow trout (Oncorhynchus mykiss) fish farmers. Its genome is constituted by six genes, codifying five structural and one nonstructural proteins. Many studies have been carried out to determine the participation of each gene in the VHSV virulence, most of them based on genome sequence analysis and/or reverse genetics to construct specific mutants and to evaluate their virulence phenotype. In the present study, we have used a different approach with a similar aim: hypothesizing that a failure in any step of the replication cycle can reduce the virulence in vivo, we studied in depth the in vitro replication of VHSV in different cell lines, using sets of strains from different origins, with high, low and moderate levels of virulence for fish. The results demonstrated that several steps in the viral replication cycle could affect VHSV virulence in fish, including adsorption, RNA synthesis and morphogenesis (including viral release). Notably, differences among strains in any step of the replication cycle were mostly strain-specific and reflected only in part the in vivo phenotype (high and low virulent). Our data, therefore, support the need for further studies aimed to construct completely avirulent VHSV recombinants targeting a combination of genes rather than a single one in order to study the mechanisms of genes interplay and their effect on viral phenotype in vitro and in vivoThe project has been funded under the ERANET. The content of this article reflects only the authors’ views, and the ERANET Consortium is not liable for any use that may be made of the information contained thereinS

    Mitochondrial genome evolution in Alismatales: Size reduction and extensive loss of ribosomal protein genes

    Get PDF
    <div><p>The order Alismatales is a hotspot for evolution of plant mitochondrial genomes characterized by remarkable differences in genome size, substitution rates, RNA editing, retrotranscription, gene loss and intron loss. Here we have sequenced the complete mitogenomes of <i>Zostera marina</i> and <i>Stratiotes aloides</i>, which together with previously sequenced mitogenomes from <i>Butomus</i> and <i>Spirodela</i>, provide new evolutionary evidence of genome size reduction, gene loss and transfer to the nucleus. The <i>Zostera</i> mitogenome includes a large portion of DNA transferred from the plastome, yet it is the smallest known mitogenome from a non-parasitic plant. Using a broad sample of the Alismatales, the evolutionary history of ribosomal protein gene loss is analyzed. In <i>Zostera</i> almost all ribosomal protein genes are lost from the mitogenome, but only some can be found in the nucleus.</p></div

    Molecular and antigenic characterization of Piscine orthoreovirus (PRV) from rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Piscine orthoreovirus (PRV-1) causes heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar). Recently, a novel PRV (formerly PRV-Om, here called PRV-3), was found in rainbow trout (Oncorhynchus mykiss) with HSMI-like disease. PRV is considered to be an emerging pathogen in farmed salmonids. In this study, molecular and antigenic characterization of PRV-3 was performed. Erythrocytes are the main target cells for PRV, and blood samples that were collected from experimentally challenged fish were used as source of virus. Virus particles were purified by gradient ultracentrifugation and the complete coding sequences of PRV-3 were obtained by Illumina sequencing. When compared to PRV-1, the nucleotide identity of the coding regions was 80.1%, and the amino acid identities of the predicted PRV-3 proteins varied from 96.7% (λ1) to 79.1% (σ3). Phylogenetic analysis showed that PRV-3 belongs to a separate cluster. The region encoding σ3 were sequenced from PRV-3 isolates collected from rainbow trout in Europe. These sequences clustered together, but were distant from PRV-3 that was isolated from rainbow trout in Norway. Bioinformatic analyses of PRV-3 proteins revealed that predicted secondary structures and functional domains were conserved between PRV-3 and PRV-1. Rabbit antisera raised against purified virus or various recombinant virus proteins from PRV-1 all cross-reacted with PRV-3. Our findings indicate that despite different species preferences of the PRV subtypes, several genetic, antigenic, and structural properties are conserved between PRV-1 and-3

    Outbreak of viral haemorrhagic septicaemia (VHS) in lumpfish (Cyclopterus lumpus) in Iceland caused by VHS virus genotype IV

    Get PDF
    Publisher's version (útgefin grein)A novel viral haemorrhagic septicaemia virus (VHSV) of genotype IV was isolated from wild lumpfish (Cyclopterus lumpus), brought to a land-based farm in Iceland, to serve as broodfish. Two groups of lumpfish juveniles, kept in tanks in the same facility, got infected. The virus isolated was identified as VHSV by ELISA and real-time RT-PCR. Phylogenetic analysis, based on the glycoprotein (G) gene sequences, may indicate a novel subgroup of VHSV genotype IV. In controlled laboratory exposure studies with this new isolate, there was 3% survival in the I.P. injection challenged group while there was 90% survival in the immersion group. VHSV was not re-isolated from fish challenged by immersion. In a cohabitation trial, lumpfish infected I.P. (shedders) were placed in tanks with naïve lumpfish as well as naïve Atlantic salmon (Salmo salar L.). 10% of the lumpfish shedders and 43%–50% of the cohabiting lumpfish survived after 4 weeks. 80%–92% of the Atlantic salmon survived, but no viral RNA was detected by real-time RT-PCR nor VHSV was isolated from Atlantic salmon. This is the first isolation of a notifiable virus in Iceland and the first report of VHSV of genotype IV in European waters.H2020 SFS-2014-2 ParaFishControl, Grant/ Award Number: 634429; European Union Reference Laboratory for Fish Diseases Grant Decision SI2.725290Peer Reviewe

    Piscine orthoreovirus subtype 3 (PRV-3) causes heart inflammation in rainbow trout (Oncorhynchus mykiss)

    Get PDF
    Abstract Piscine orthoreovirus (PRV) mediated diseases have emerged throughout salmonid aquaculture. Three PRV subtypes are currently reported as causative agents of or in association with diseases in different salmonid species. PRV-1 causes heart and skeletal muscle inflammation (HSMI) in Atlantic salmon (Salmo salar) and is associated with jaundice syndrome in farmed chinook salmon (Oncorhynchus tshawytscha). PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon in Japan. PRV-3 has recently been associated with a disease in rainbow trout (Oncorhynchus mykiss) characterized by anaemia, heart and red muscle pathology; to jaundice syndrome in coho salmon (Oncorhynchus kisutch). In this study, we conducted a 10-week long experimental infection trial in rainbow trout with purified PRV-3 particles to assess the causal relationship between the virus and development of heart inflammation. The monitoring the PRV-3 load in heart and spleen by RT-qPCR shows a progressive increase of viral RNA to a peak, followed by clearance without a measurable change in haematocrit. The development of characteristic cardiac histopathological findings occurred in the late phase of the trial and was associated with increased expression of CD8+, indicating cytotoxic T cell proliferation. The findings indicate that, under these experimental conditions, PRV-3 infection in rainbow trout act similarly to PRV-1 infection in Atlantic salmon with regards to immunological responses and development of heart pathology, but not in the ability to establish a persistent infection
    corecore