15 research outputs found
Random fields on model sets with localized dependency and their diffraction
For a random field on a general discrete set, we introduce a condition that
the range of the correlation from each site is within a predefined compact set
D. For such a random field omega defined on the model set Lambda that satisfies
a natural geometric condition, we develop a method to calculate the diffraction
measure of the random field. The method partitions the random field into a
finite number of random fields, each being independent and admitting the law of
large numbers. The diffraction measure of omega consists almost surely of a
pure-point component and an absolutely continuous component. The former is the
diffraction measure of the expectation E[omega], while the inverse Fourier
transform of the absolutely continuous component of omega turns out to be a
weighted Dirac comb which satisfies a simple formula. Moreover, the pure-point
component will be understood quantitatively in a simple exact formula if the
weights are continuous over the internal space of Lambda Then we provide a
sufficient condition that the diffraction measure of a random field on a model
set is still pure-point.Comment: 21 page
Kepler Mission Stellar and Instrument Noise Properties
Kepler Mission results are rapidly contributing to fundamentally new
discoveries in both the exoplanet and asteroseismology fields. The data
returned from Kepler are unique in terms of the number of stars observed,
precision of photometry for time series observations, and the temporal extent
of high duty cycle observations. As the first mission to provide extensive time
series measurements on thousands of stars over months to years at a level
hitherto possible only for the Sun, the results from Kepler will vastly
increase our knowledge of stellar variability for quiet solar-type stars. Here
we report on the stellar noise inferred on the timescale of a few hours of most
interest for detection of exoplanets via transits. By design the data from
moderately bright Kepler stars are expected to have roughly comparable levels
of noise intrinsic to the stars and arising from a combination of fundamental
limitations such as Poisson statistics and any instrument noise. The noise
levels attained by Kepler on-orbit exceed by some 50% the target levels for
solar-type, quiet stars. We provide a decomposition of observed noise for an
ensemble of 12th magnitude stars arising from fundamental terms (Poisson and
readout noise), added noise due to the instrument and that intrinsic to the
stars. The largest factor in the modestly higher than anticipated noise follows
from intrinsic stellar noise. We show that using stellar parameters from
galactic stellar synthesis models, and projections to stellar rotation,
activity and hence noise levels reproduces the primary intrinsic stellar noise
features.Comment: Accepted by ApJ; 26 pages, 20 figure
TB and TB-HIV care for adolescents and young adults
SETTING:
Nine high-burden public tuberculosis (TB) clinics in Gaborone, Botswana.
OBJECTIVE:
To evaluate the challenges encountered, healthcare worker (HCW) approaches, and supported interventions in TB and TB-HIV (human immunodeficiency virus) care for adolescents and young adults (AYA, aged 10–24 years).
DESIGN:
Semi-structured interviews with HCW in TB clinics, analyzed using thematic analysis.
RESULTS:
Sixteen HCWs were interviewed. AYA developmental needs included reliance on family support for care, increasing autonomy, attending school or work, building trust in HCWs, and intensive TB education and adherence support. Stigma strongly influenced care engagement, including clinic attendance and HIV testing. Health system barriers to optimal AYA TB care included limited staffing and resources to follow-up or support. HCWs utilized intensive education and counseling, and transitioned AYA to community-based directly observed therapy whenever feasible. HCWs supported implementation of youth-friendly services, such as AYA-friendly spaces or clinic days, training in AYA care, use of mobile applications, and peer support interventions, in addition to health system strengthening.
CONCLUSION:
HCWs utilize dedicated approaches for AYA with TB, but have limited time and resources for optimal care. They identified several strategies likely to improve care and better retain AYAs in TB treatment. Further work is needed to study interventions to improve AYA TB care and outcomes
Planetary Candidates Observed by Kepler VI: Planet Sample from Q1-Q16 (47 Months)
\We present the sixth catalog of Kepler candidate planets based on nearly 4
years of high precision photometry. This catalog builds on the legacy of
previous catalogs released by the Kepler project and includes 1493 new Kepler
Objects of Interest (KOIs) of which 554 are planet candidates, and 131 of these
candidates have best fit radii <1.5 R_earth. This brings the total number of
KOIs and planet candidates to 7305 and 4173 respectively. We suspect that many
of these new candidates at the low signal-to-noise limit may be false alarms
created by instrumental noise, and discuss our efforts to identify such
objects. We re-evaluate all previously published KOIs with orbital periods of
>50 days to provide a consistently vetted sample that can be used to improve
planet occurrence rate calculations. We discuss the performance of our planet
detection algorithms, and the consistency of our vetting products. The full
catalog is publicly available at the NASA Exoplanet Archive.Comment: 18 pages, to be published in the Astrophysical Journal Supplement
Serie
Kepler mission stellar and instrument noise properties
Kepler mission results are rapidly contributing to fundamentally new discoveries in both the exoplanet and asteroseismology fields. The data returned from Kepler are unique in terms of the number of stars observed, precision of photometry for time series observations, and the temporal extent of high duty cycle observations. As the first mission to provide extensive time series measurements on thousands of stars over months to years at a level hitherto possible only for the Sun, the results from Kepler will vastly increase our knowledge of stellar variability for quiet solar-type stars. Here, we report on the stellar noise inferred on the timescale of a few hours of most interest for detection of exoplanets via transits. By design the data from moderately bright Kepler stars are expected to have roughly comparable levels of noise intrinsic to the stars and arising from a combination of fundamental limitations such as Poisson statistics and any instrument noise. The noise levels attained by Kepler on-orbit exceed by some 50% the target levels for solar-type, quiet stars. We provide a decomposition of observed noise for an ensemble of 12th magnitude stars arising from fundamental terms (Poisson and readout noise), added noise due to the instrument and that intrinsic to the stars. The largest factor in the modestly higher than anticipated noise follows from intrinsic stellar noise. We show that using stellar parameters from galactic stellar synthesis models, and projections to stellar rotation, activity, and hence noise levels reproduce the primary intrinsic stellar noise features. © 2011. The American Astronomical Society. All rights reserved