21 research outputs found

    Elongation factor 2-diphthamide is critical for translation of two IRES-dependent protein targets, XIAP and FGF2, under oxidative stress conditions

    Get PDF
    Elongation factor-2 (eEF2) catalyzes the movement of the ribosome along the mRNA. A single histidine residue in eEF2 (H715) is modified to form diphthamide. A role for eEF2 in cellular stress responses is highlighted by the fact that eEF2 is sensitive to oxidative stress and that it must be active in order to drive the synthesis of proteins that help cells to mitigate the adverse effects of oxidative stress. Many of the latter proteins are encoded by mRNAs containing a sequence called an “internal ribosomal entry site” (IRES). Under high oxidative stress conditions diphthamide-deficient cells were significantly more sensitive to cell death. These results suggest that diphthamide may play a role in protection against the degradation of eEF2. Its protection is especially important under those situations where it is necessary for the re-programming of translation from global to IRES synthesis. Indeed, we found that the expression of X-linked inhibitor of apoptosis (XIAP) and fibroblast growth factor 2 (FGF2), two proteins synthesized from mRNAs with IRES that promote cell survival are deregulated in diphthamide-deficient cells. Our findings therefore suggest that eEF2/diphthamide controls the selective translation of IRES-dependent protein targets XIAP and FGF2, critical for cell survival under conditions of oxidative stress.España, Ministerio de Ciencia e Innovación BFU 2010-20882

    Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal

    Get PDF
    Lipid peroxidation can be described generally as a process under which oxidants such as free radicals attack lipids containing carbon-carbon double bond(s), especially polyunsaturated fatty acids (PUFAs). Over the last four decades, an extensive body of literature regarding lipid peroxidation has shown its important role in cell biology and human health. Since the early 1970s, the total published research articles on the topic of lipid peroxidation was 98 (1970–1974) and has been increasing at almost 135-fold, by up to 13165 in last 4 years (2010–2013). New discoveries about the involvement in cellular physiology and pathology, as well as the control of lipid peroxidation, continue to emerge every day. Given the enormity of this field, this review focuses on biochemical concepts of lipid peroxidation, production, metabolism, and signaling mechanisms of two main omega-6 fatty acids lipid peroxidation products: malondialdehyde (MDA) and, in particular, 4-hydroxy-2-nonenal (4-HNE), summarizing not only its physiological and protective function as signaling molecule stimulating gene expression and cell survival, but also its cytotoxic role inhibiting gene expression and promoting cell death. Finally, overviews of in vivo mammalian model systems used to study the lipid peroxidation process, and common pathological processes linked to MDA and 4-HNE are show

    Molecular Control of the Amount, Subcellular Location and Activity State of Translation Elongation Factor 2 (eEF-2) in Neurons Experiencing Stress

    Get PDF
    Eukaryotic elongation factor 2 (eEF-2) is an important regulator of the protein translation machinery wherein it controls the movement of the ribosome along the mRNA. The activity of eEF-2 is regulated by changes in cellular energy status and nutrient availability, and posttranslational modifications such as phosphorylation and mono-ADP-ribosylation. However, the mechanisms regulating protein translation under conditions of cellular stress in neurons are unknown. Here we show that when rat hippocampal neurons experience oxidative stress (lipid peroxidation induced by exposure to cumene hydroperoxide; CH), eEF-2 is hyperphosphorylated and ribosylated resulting in reduced translational activity. The degradation of eEF-2 requires calpain proteolytic activity and is accompanied by accumulation of eEF-2 in the nuclear compartment. The subcellular localization of both native and phosphorylated forms of eEF-2 is influenced by CRM1 and 14.3.3, respectively. In hippocampal neurons p53 interacts with non-phosphorylated (active) eEF-2, but not with its phosphorylated form. The p53 – eEF-2 complexes are present in cytoplasm and nucleus, and their abundance increases when neurons experience oxidative stress. The nuclear localization of active eEF-2 depends upon its interaction with p53, as cells lacking p53 contain less active eEF-2 in the nuclear compartment. Overexpression of eEF-2 in hippocampal neurons results in increased nuclear levels of eEF-2, and decreased cell death following exposure to CH. Our results reveal novel molecular mechanisms controlling the differential subcellular localization and activity state of eEF-2 that may influence the survival status of neurons during periods of elevated oxidative stress.España, Ministerio de Ciencia e Innovación BFU2010-20882.España, Ministerio de Educación, Cultura y Deporte postdoctoral fellowship (EX2009-0918

    Physical exercise and myokines

    Get PDF
    Among the types of muscles present in the body is skeletal muscle, which is the one that allows the development of physical activity thanks to the contractile activity of its muscle cells. It is known that physical exercise involves the release of plasma, by the skeletal muscle, of molecules called myokines as a result of muscle contraction. These myokines seem to be at the base of the beneficial effect of physical exercise on health. For this reason, this article reviews the characteristics and properties of the most important myokines and how they can contribute to a healthier aging

    Uric acid enhances longevity and endurance and protects the brain against ischemia

    Get PDF
    Among mammals, there is a positive correlation between serum uric acid (UA) levels and life span. Humans have high levels of UA because they lack a functional urate oxidase (UOX) enzyme that is present in shorter lived mammals. Here, we show that male and female mice with UOX haploinsufficiency exhibit an age-related elevation of UA levels, and that the life span of female but not male UOX+/− mice is significantly increased compared to wild-type mice. Serum UA levels are elevated in response to treadmill exercise in UOX+/− mice, but not wild-type mice, and the endurance of the UOX+/− mice is significantly greater than wild-type mice. UOX+/− mice exhibit elevated levels of brain-derived neurotrophic factor, reduced brain damage and improved functional outcome in a model of focal ischemic stroke. Levels of oxidative protein nitration and lipid peroxidation are reduced in muscle and brain tissues of UOX+/− mice under conditions of metabolic and oxidative stress (running in the case of muscle and ischemia in the case of the brain), consistent with prior evidence that UA can scavenge peroxynitrite and hydroxyl radical. Our findings reveal roles for UA in life span determination, endurance and adaptive responses to brain injury, and suggest novel approaches for protecting cells against injury and for optimizing physical performance.España, Ministerio de Educación, Cultura y Deporte EX2009–091

    Folic acid supplementation: some practical aspects

    Get PDF
    Since 1956, when Harman first postulated the free radical theory of aging, numerous studies have been carried out to test the protective action of antioxidants. One of these protective compounds used in antioxidant therapy is folic acid (FA). Folate deficiency can lead to several pathologies and its protective role is very well known. Because the negative effects of the synthetic form on the metabolism of folates and the controversy about the role of folic acid in cancer, the question is whether or not folic acid is good for everyone. In this paper we summarize some aspects of the biochemistry of folic acid and we show some precautions that should be taken into consideration when supplementing with this compound

    Stress Increases Vulnerability to Inflammation in the Rat Prefrontal Cortex

    Get PDF
    Inflammation could be involved in some neurodegenerative disorders that accompany signs of inflammation. However, because sensitivity to inflammation is not equal in all brain structures, a direct relationship is not clear. Our aim was to test whether some physiological circumstances, such as stress, could enhance susceptibility to inflammation in the prefrontal cortex (PFC), which shows a relative resistance to inflammation. PFC is important in many brain functions and is a target for some neurodegenerative diseases. We induced an inflammatory process by a single intracortical injection of 2 μg of lipopolysaccharide (LPS), a potent proinflammogen, in nonstressed and stressed rats. We evaluated the effect of our treatment on inflammatory markers, neuronal populations, BDNF expression, and behavior of several mitogen-activated protein (MAP) kinases and the transcription factor cAMP response element-binding protein. Stress strengthens the changes induced by LPS injection: microglial activation and proliferation with an increase in the levels of the proinflammatory cytokine tumor necrosis factor-α; loss of cells such as astroglia, seen as loss of glial fibrillary acidic protein immunoreactivity, and neurons, studied by neuronal-specific nuclear protein immunohistochemistry and GAD67 and NMDA receptor 1A mRNAs expression by in situ hybridization. A significant increase in the BDNF mRNA expression and modifications in the levels of MAP kinase phosphorylation were also found. In addition, we observed a protective effect from RU486 [mifepristone (11β-[p-(dimethylamino)phenyl]-17β-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one)], a potent inhibitor of the glucocorticoid receptor activation. All of these data show a synergistic effect between inflammation and stress, which could explain the relationship described between stress and some neurodegenerative pathologies.España,Ministerio de Educación y Ciencia Grants SAF2002-01952 and SAF2004-0660

    The Neurokinin-1 Receptor Is Essential for the Viability of Human Glioma Cells: A Possible Target for Treating Glioblastoma

    Get PDF
    Background. Glioblastoma or glioma is the most common malignant brain tumor. Patients have a prognosis of approximately 15 months, despite the current aggressive treatment. Neurokinin-1 receptor (NK-1R) occurs naturally in human glioma, and it is necessary for the tumor development. Objective. The purpose of the study was to increase the knowledge about the involvement of the substance P (SP)/NK-1R system in human glioma. Methods. Cellular localization of NK-1R and SP was studied in GAMG and U-87 MG glioma cell lines by immunofluorescence. The contribution of both SP and NK-1R to the viability of these cells was also assessed after applying the tachykinin 1 receptor (TAC1R) or the tachykinin 1 (TAC1) small interfering RNA gene silencing method, respectively. Results. Both SP and the NK-1R (full-length and truncated isoforms) were localized in the nucleus and cytoplasm of GAMG and U-87 MG glioma cells. The presence of full-length NK-1R isoform was mainly observed in the nucleus, while the level of truncated isoform was higher in the cytoplasm. Cell proliferation was decreased when glioma cells were transfected with TAC1R siRNA, but not with TAC1. U-87 MG cells were more sensitive to the effect of the TAC1R inhibition than GAMG cells. The decrease in the number of glioma cells after silencing of the TAC1R siRNA gene was due to apoptotic and necrotic mechanisms. In human primary fibroblast cultured cells, TAC1R silencing by siRNA did not produce any change in cell viability. Conclusions. Our results show for the first time that the expression of the TAC1R gene (NK-1R) is essential for the viability of GAMG and U-87 MG glioma cells. On the contrary, the TAC1R gene is not essential for the viability of normal cells, confirming that NK-1R could be a promising and specific therapeutic target for the treatment of glioma.Junta de Andalucía BIO-15

    Treatment with mesenchymal stem cells in an animal model of parkinson´s disease

    Get PDF
    Consejería de Economía, Innovación y Ciencia, Junta de Andalucía P10-CTS-649

    Potential use of adipose tissue stem cells in the control of aging

    Get PDF
    Cell therapy with adult stem cells is a new battle front for the control of aging. Before being used for this purpose, we need to answer several basic questions about the biochemistry and physiology of these cells. This paper presents some aspects and preliminary results obtained in our laboratory using stem cells from adipose tissue.Ministerio de Ciencia e Innovación BFU 2010 2088
    corecore