1,607 research outputs found

    Optimal deployment of next-generation PON for high and ultra-high bandwidth demand scenarios in large urban areas

    Get PDF
    This paper proposes a techno-economic analysis of the optimal deployment of multiple PON networks with different technologies, including the newest next-generation standards, such as GPON, XGSPON, NG-PON2 and 50G-EPON, within a large urban area in Quito. On this zone, we simulated a population of around 20000 customers, distributed between two central offices. We assume that customers demand different bitrates considering present and future bitrate-demand scenarios. This analysis uses an algorithm called OTS (Optimal Topology Search) which employs a nested set of heuristics in order to find the optimal topology for the deployment of PON in large areas with many potential customers. Results obtained in this research describe an accurate projection of the optimal deployment cost and the most suitable PON technology for each bitrate demand scenario, taking into account not only the cost of the entire hardware, but leasing, labor-hours, pole-works and trenching/recapping-works

    Response of exact solutions of the nonlinear Schrodinger equation to small perturbations in a class of complex external potentials having supersymmetry and parity-time symmetry

    Get PDF
    We discuss the effect of small perturbation on nodeless solutions of the nonlinear \Schrodinger\ equation in 1+1 dimensions in an external complex potential derivable from a parity-time symmetric superpotential that was considered earlier [Phys.~Rev.~E 92, 042901 (2015)]. In particular we consider the nonlinear partial differential equation \{ \, \rmi \, \partial_t + \partial_x^2 + g |\psi(x,t)|^2 - V^{+}(x) \, \} \, \psi(x,t) = 0, where V^{+}(x) = \qty( -b^2 - m^2 + 1/4 ) \, \sech^2(x) - 2 i \, m \, b \, \sech(x) \, \tanh(x) represents the complex potential. Here we study the perturbations as a function of bb and mm using a variational approximation based on a dissipation functional formalism. We compare the result of this variational approach with direct numerical simulation of the equations. We find that the variational approximation works quite well at small and moderate values of the parameter bmb m which controls the strength of the imaginary part of the potential. We also show that the dissipation functional formalism is equivalent to the generalized traveling wave method for this type of dissipation.Comment: 18 pages, 6 figure

    Electron neutrino tagging through tertiary lepton detection

    Get PDF
    We discuss an experimental technique aimed at tagging electron neutrinos in multi-GeV artificial sources on an event-by-event basis. It exploits in a novel manner calorimetric and tracking technologies developed in the framework of the LHC experiments and of rare kaon decay searches. The setup is suited for slow-extraction, moderate power beams and it is based on an instrumented decay tunnel equipped with tagging units that intercept secondary and tertiary leptons from the bulk of undecayed \pi^+ and protons. We show that the taggers are able to reduce the \nue contamination originating from K_e3 decays by about one order of magnitude. Only a limited suppression (~60%) is achieved for \nue produced by the decay-in-flight of muons; for low beam powers, similar performance as for K_e3 can be reached supplementing the tagging system with an instrumented beam dump.Comment: 19 pages, 7 figures; minor changes, version to appear in EPJ
    • …
    corecore