23 research outputs found

    Mashes to Mashes, Crust to Crust. Presenting a novel microstructural marker for malting in the archaeological record

    Get PDF
    The detection of direct archaeological remains of alcoholic beverages and their production is still a challenge to archaeological science, as most of the markers known up to now are either not durable or diagnostic enough to be used as secure proof. The current study addresses this question by experimental work reproducing the malting processes and subsequent charring of the resulting products under laboratory conditions in order to simulate their preservation (by charring) in archaeological contexts and to explore the preservation of microstructural alterations of the cereal grains. The experimentally germinated and charred grains showed clearly degraded (thinned) aleurone cell walls. The histological alterations of the cereal grains were observed and quantified using reflected light and scanning electron microscopy and supported using morphometric and statistical analyses. In order to verify the experimental observations of histological alterations, amorphous charred objects (ACO) containing cereal remains originating from five archaeological sites dating to the 4th millennium BCE were considered: two sites were archaeologically recognisable brewing installations from Predynastic Egypt, while the three broadly contemporary central European lakeshore settlements lack specific contexts for their cereal-based food remains. The aleurone cell wall thinning known from food technological research and observed in our own experimental material was indeed also recorded in the archaeological finds. The Egyptian materials derive from beer production with certainty, supported by ample contextual and artefactual data. The Neolithic lakeshore settlement finds currently represent the oldest traces of malting in central Europe, while a bowl-shaped bread-like object from Hornstaad– Ho¨ rnle possibly even points towards early beer production in central Europe. One major further implication of our study is that the cell wall breakdown in the grain’s aleurone layer can be used as a general marker for malting processes with relevance to a wide range of charred archaeological finds of cereal products

    Global prevalence and genotype distribution of hepatitis C virus infection in 2015 : A modelling study

    Get PDF
    Publisher Copyright: © 2017 Elsevier LtdBackground The 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of—and expansion on—the 2014 analysis, which reported 80 million (95% CI 64–103) viraemic infections in 2013. Methods We developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data. Findings Models were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8–1·1) in 2015, corresponding to 71·1 million (62·5–79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively). Interpretation The global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections. Funding John C Martin Foundation.publishersversionPeer reviewe

    Fault Isolability Analysis and Optimal Sensor Placement for Fault Diagnosis in Smart Buildings

    No full text
    Faults and anomalies in buildings are among the main causes of building energy waste and occupant discomfort. An effective automatic fault detection and diagnosis (FDD) process in buildings can therefore save a significant amount of energy and improve the comfort level. Fault diagnosability analysis and an optimal FDD-oriented sensor placement are prerequisites for effective, efficient and successful diagnostics. This paper addresses the problem of fault diagnosability for smart buildings. The method used in the paper is a model-based technique which uses Dulmage-Mendelsohn decomposition. To the best of our knowledge, this is the first time that this method is used for applications in smart buildings. First a dynamic model for a zone in a real-case building is developed in which faults are also introduced. Then fault diagnosability is investigated by analyzing the fault isolability of the model. Based on the investigation, it was concluded that not all the faults in the model are diagnosable. Then an approach for placing new sensors is implemented. It is observed that for two test scenarios, placing additional sensors in the model leads to full diagnosability. Since sensors placement is key for an effective FDD process, the optimal placement of such sensors is also studied in this work. A case study of campus building OU44 at the University of Southern Denmark is considered. The results show that as the system gets more complicated by introducing more faults, additional sensors should be added to achieve full diagnosability

    All you need to know about model predictive control for buildings

    No full text
    It has been proven that advanced building control, like model predictive control (MPC), can notably reduce the energy use and mitigate greenhouse gas emissions. However, despite intensive research efforts, the practical applications are still in the early stages. There is a growing need for multidisciplinary education on advanced control methods in the built environment to be accessible for a broad range of researchers and practitioners with different engineering backgrounds. This paper provides a unified framework for model predictive building control technology with focus on the real-world applications. From a theoretical point of view, this paper pre-sents an overview of MPC formulations for building control, modeling paradigms and model types, together with algorithms necessary for real-life implementation. The paper categorizes the most notable MPC problem classes, links them with corresponding solution techniques, and provides an overview of methods for mitigation of the uncertainties for increased performance and robustness of MPC. From a practical point of view, this paper delivers an elaborate classification of the most important modeling, co-simulation, optimal control design, and optimization techniques, tools, and solvers suitable to tackle the MPC problems in the context of building climate control. On top of this, the paper presents the essential components of a practical implementation of MPC such as different control architectures and nuances of communication infrastructures within supervisory control and data acquisition (SCADA) systems. The paper draws practical guidelines with a generic workflow for implementation of MPC in real buildings aimed for contemporary adopters of this technology. Finally, the importance of standardized performance assessment and methodology for comparison of different building control algorithms is discussed.status: Published onlin

    Mashes to Mashes, Crust to Crust. Presenting a novel microstructural marker for malting in the archaeological record

    No full text
    The detection of direct archaeological remains of alcoholic beverages and their production is still a challenge to archaeological science, as most of the markers known up to now are either not durable or diagnostic enough to be used as secure proof. The current study addresses this question by experimental work reproducing the malting processes and subsequent charring of the resulting products under laboratory conditions in order to simulate their preservation (by charring) in archaeological contexts and to explore the preservation of microstructural alterations of the cereal grains. The experimentally germinated and charred grains showed clearly degraded (thinned) aleurone cell walls. The histological alterations of the cereal grains were observed and quantified using reflected light and scanning electron microscopy and supported using morphometric and statistical analyses. In order to verify the experimental observations of histological alterations, amorphous charred objects (ACO) containing cereal remains originating from five archaeological sites dating to the 4th millennium BCE were considered: two sites were archaeologically recognisable brewing installations from Predynastic Egypt, while the three broadly contemporary central European lakeshore settlements lack specific contexts for their cereal-based food remains. The aleurone cell wall thinning known from food technological research and observed in our own experimental material was indeed also recorded in the archaeological finds. The Egyptian materials derive from beer production with certainty, supported by ample contextual and artefactual data. The Neolithic lakeshore settlement finds currently represent the oldest traces of malting in central Europe, while a bowl-shaped bread-like object from Hornstaad-Hörnle possibly even points towards early beer production in central Europe. One major further implication of our study is that the cell wall breakdown in the grain's aleurone layer can be used as a general marker for malting processes with relevance to a wide range of charred archaeological finds of cereal products.urldate: 08.05.2020status: publishe
    corecore