2 research outputs found

    Protective effects of angiopoietin-like 4 on cerebrovascular and functional damages in ischaemic stroke

    Get PDF
    AIMS: Given the impact of vascular injuries and oedema on brain damage caused during stroke, vascular protection represents a major medical need. We hypothesized that angiopoietin-like 4 (ANGPTL4), a regulator of endothelial barrier integrity, might exert a protective effect during ischaemic stroke. METHODS AND RESULTS: Using a murine transient ischaemic stroke model, treatment with recombinant ANGPTL4 led to significantly decreased infarct size and improved behaviour. Quantitative characteristics of the vascular network (density and branchpoints) were preserved in ANGPTL4-treated mice. Integrity of tight and adherens junctions was also quantified and ANGPTL4-treated mice displayed increased VE-cadherin and claudin-5-positive areas. Brain oedema was thus significantly decreased in ANGPTL4-treated mice. In accordance, vascular damage and infarct severity were increased in angptl4-deficient mice thus providing genetic evidence that ANGPTL4 preserves brain tissue from ischaemia-induced alterations. Altogether, these data show that ANGPTL4 protects not only the global vascular network, but also interendothelial junctions and controls both deleterious inflammatory response and oedema. Mechanistically, ANGPTL4 counteracted VEGF signalling and thereby diminished Src-signalling downstream from VEGFR2. This led to decreased VEGFR2-VE-cadherin complex disruption, increased stability of junctions and thus increased endothelial cell barrier integrity of the cerebral microcirculation. In addition, ANGPTL4 prevented neuronal loss in the ischaemic area. CONCLUSION: These results, therefore, show ANGPTL4 counteracts the loss of vascular integrity in ischaemic stroke, by restricting Src kinase signalling downstream from VEGFR2. ANGPTL4 treatment thus reduces oedema, infarct size, neuronal loss, and improves mice behaviour. These results suggest that ANGPTL4 constitutes a relevant target for vasculoprotection and cerebral protection during stroke

    The interaction of heparan sulfate proteoglycans with endothelial transglutaminase-2 limits VEGF165-induced angiogenesis

    No full text
    International audienceSprouting angiogenesis is stimulated by vascular endothelial growth factor (VEGF165) that is localized in the extracellular matrix (ECM) and binds to heparan sulfate (HS)-bearing proteins known as heparan sulfate proteoglycans (HSPGs). VEGF165 presentation by HSPGs enhances VEGF receptor-2 (VEGFR2) signaling. We investigated the effect of TG2, which binds to HSPGs, on the interaction between VEGF165 and HS and angiogenesis. Mice with tg2 deficiency showed transiently enhanced retina vessel formation and increased vascularization of VEGF165-containing Matrigel implants. In addition, endothelial cells in which TG2 was knocked down exhibited enhanced VEGF165-induced sprouting and migration, which was associated with increased phosphorylation of VEGFR2 at Tyr(951) and its targets Src and Akt. TG2 knockdown did not affect the phosphorylation of VEGFR2 at Tyr(1175) or cell proliferation in response to VEGF165 and sprouting or signaling in response to VEGF121. Decreased phosphorylation of VEGFR2 at Tyr(951) was due to ECM-localized TG2, which reduced the binding of VEGF165 to endothelial ECM in a manner that required its ability to bind to HS but not its catalytic activity. Surface plasmon resonance assays demonstrated that TG2 impeded the interaction between VEGF165 and HS. These results show that TG2 controls the formation of VEGF165-HSPG complexes and suggest that this regulation could be pharmacologically targeted to modulate developmental and therapeutic angiogenesi
    corecore