88 research outputs found
E2F1 activates p53 transcription through its distal site and participates in apoptosis induction in HPV-positive cells
AbstractThe p53 tumor suppressor protein, one of the most extensively studied proteins, plays a pivotal role in cellular checkpoints that respond to DNA damage to prevent tumorigenesis. However, the transcriptional control of the p53 gene has not been fully characterized. We report that the transcription factor E2F1 binds only to the E2F1 distal site of the p53 promoter in the human papillomavirus positive carcinoma HeLa cell line. Moreover, we showed that etoposide, a DNA damaging agent, activates p53 transcription through the E2F1 pathway. This increase correlates with apoptosis induction as disruption of this pathway led to reduced apoptosis stimulation by the DNA damaging agent
Neisseria conserved protein DMP19 is a DNA mimic protein that prevents DNA binding to a hypothetical nitrogen-response transcription factor
DNA mimic proteins occupy the DNA binding sites of DNA-binding proteins, and prevent these sites from being accessed by DNA. We show here that the Neisseria conserved hypothetical protein DMP19 acts as a DNA mimic. The crystal structure of DMP19 shows a dsDNA-like negative charge distribution on the surface, suggesting that this protein should be added to the short list of known DNA mimic proteins. The crystal structure of another related protein, NHTF (Neisseria hypothetical transcription factor), provides evidence that it is a member of the xenobiotic-response element (XRE) family of transcriptional factors. NHTF binds to a palindromic DNA sequence containing a 5′-TGTNAN11TNACA-3′ recognition box that controls the expression of an NHTF-related operon in which the conserved nitrogen-response protein [i.e. (Protein-PII) uridylyltransferase] is encoded. The complementary surface charges between DMP19 and NHTF suggest specific charge–charge interaction. In a DNA-binding assay, we found that DMP19 can prevent NHTF from binding to its DNA-binding sites. Finally, we used an in situ gene regulation assay to provide evidence that NHTF is a repressor of its down-stream genes and that DMP19 can neutralize this effect. We therefore conclude that the interaction of DMP19 and NHTF provides a novel gene regulation mechanism in Neisseria spps
Régulation de l'assimilation de l'azote chez le symbiote de la luzerne, Rhizobium meliloti
*INRA, Centre de Toulouse (FRA) Diffusion du document : INRA, Centre de Toulouse (FRA) Diplôme : Dr. d'Universit
Régulation de l'assimilation de l'azote chez le symbiote de la luzerne, Rhizobium meliloti
*INRA, Centre de Toulouse (FRA) Diffusion du document : INRA, Centre de Toulouse (FRA) Diplôme : Dr. d'Universit
Symbiotic nitrogen fixation does not require adenylylation of glutamine synthetase I in Rhizobium meliloti
International audienc
glnD and mviN are genes of an essential operon in Sinorhizobium meliloti
To evaluate the role of uridylyl-transferase, the Sinorhizobium meliloti glnD gene was isolated by heterologous complementation in Azotobacter vinelandii. The glnD gene is cotranscribed with a gene homologous to Salmonella mviN. glnD1::Omega or mviN1::Omega mutants could not be isolated by a powerful sucrose counterselection procedure unless a complementing cosmid was provided, indicating that glnD and mviN are members of an indispensable operon in S. meliloti
Analysis of putative G-quadruplex forming sequences in inflammatory mediators and their potential as targets for treating inflammatory disorders
G-quadruplexes (G4s) are non-canonical secondary structures located in DNA and RNA which have demonstrable roles in the regulation of transcription and translation. G4s have received considerable interest as a drug target in cancer, given their ability to regulate the expression of proto-oncogenes and inhibit growth of cancer cells. However, their presence in the genes of inflammatory mediators has not been discussed to date. Therefore, we computationally investigated putative quadruplex-forming sequences (PQS) in the promoters and gene bodies of cytokines and chemokines. Here, we demonstrated that the promoters of IL-6, IL-12, IL-17, TGF-β, TNF, and β-chain family cytokines and XC and TAFA family chemokines display high PQS frequencies comparable to those observed in proto-oncogenes. Moreover, 47.82% of the gene promoters contained sequences with high propensity to form G4s. Furthermore, G4s can primarily be found within the GC-boxes and binding sites for specificity protein and Krϋppel-like transcription factors. However, they can also be found located in a further 59 sites involved in the binding of transcription factors involved in inflammation and immunity such as NF-κB1, RelA, RelB, IRF5, and NFAT5. We also identified that 72.17% and 70.43% of genes investigated contained sequences highly likely to form G4s in their coding and template strands, respectively. Exploring the regulatory roles of G4s in genes encoding inflammatory mediators could provide novel drug targets to modulate inflammation and treat inflammatory diseases
The StkP/PhpP Signaling Couple in Streptococcus pneumoniae: Cellular Organization and Physiological Characterization ▿ †
In Streptococcus pneumoniae, stkP and phpP, encoding the eukaryotic-type serine-threonine kinase and PP2C phosphatase, respectively, form an operon. PhpP has the features of a so-called “soluble” protein, whereas StkP protein is membrane associated. Here we provide the first genetic and physiological evidence that PhpP and StkP, with antagonist enzymatic activities, constitute a signaling couple. The StkP-PhpP couple signals competence upstream of the competence-specific histidine kinase ComD, receptor for the oligopeptide pheromone “competence stimulating peptide.” We show that PhpP activity is essential in a stkP+ genetic background, suggesting tight control of StkP activity by PhpP. Proteins PhpP and StkP colocalized to the cell membrane subcellular fraction and likely belong to the same complex, as revealed by coimmunoprecipitation in cellular extracts. Specific coimmunoprecipitation of the N-kinase domain of StkP and PhpP recombinant proteins by PhpP-specific antibodies demonstrates direct interaction between these proteins. Consistently, flow cytometry analysis allowed the determination of the cytoplasmic localization of PhpP and of the N-terminal kinase domain of StkP, in contrast to the periplasmic localization of the StkP C-terminal PASTA (penicillin-binding protein and serine-threonine kinase associated) domain. A signaling route involving interplay between serine, threonine, and histidine phosphorylation is thus described for the first time in this human pathogen
- …