29 research outputs found
Automated sulfur-[18F]fluoride exchange radiolabelling of a prostate specific membrane antigen (PSMA) targeted ligand using the GE FASTlab™ cassette-based platform
Sulfur-[18F]fluoride exchange radiochemistry is a rapid and convenient method for incorporating fluorine-18 into biologically active molecules. We report a fully automated radiolabelling procedure for the synthesis of a [18F]SO3F-bearing prostate specific membrane antigen (PSMA) targeted ligand ([18F]5) using the GE FASTLab™ cassette-based platform in a 25.0 ± 2.6% radiochemical yield (decay corrected). Uptake in vitro and in vivo correlated with PSMA expression, and the radioligand exhibited favourable biodistribution and pharmacokinetic profiles
[Avian cytogenetics goes functional] Third report on chicken genes and chromosomes 2015
High-density gridded libraries of large-insert clones using bacterial artificial chromosome (BAC) and other vectors are essential tools for genetic and genomic research in chicken and other avian species... Taken together, these studies demonstrate that applications of large-insert clones and BAC libraries derived from birds are, and will continue to be, effective tools to aid high-throughput and state-of-the-art genomic efforts and the important biological insight that arises from them
Surface rupture of multiple crustal faults in the 2016 Mw 7.8 Kaikōura, New Zealand, earthquake
Multiple (>20
>20
) crustal faults ruptured to the ground surface and seafloor in the 14 November 2016 M w
Mw
7.8 Kaikōura earthquake, and many have been documented in detail, providing an opportunity to understand the factors controlling multifault ruptures, including the role of the subduction interface. We present a summary of the surface ruptures, as well as previous knowledge including paleoseismic data, and use these data and a 3D geological model to calculate cumulative geological moment magnitudes (M G w
MwG
) and seismic moments for comparison with those from geophysical datasets. The earthquake ruptured faults with a wide range of orientations, sense of movement, slip rates, and recurrence intervals, and crossed a tectonic domain boundary, the Hope fault. The maximum net surface displacement was ∼12 m
∼12 m
on the Kekerengu and the Papatea faults, and average displacements for the major faults were 0.7–1.5 m south of the Hope fault, and 5.5–6.4 m to the north. M G w
MwG
using two different methods are M G w
MwG
7.7 +0.3 −0.2
7.7−0.2+0.3
and the seismic moment is 33%–67% of geophysical datasets. However, these are minimum values and a best estimate M G w
MwG
incorporating probable larger slip at depth, a 20 km seismogenic depth, and likely listric geometry is M G w
MwG
7.8±0.2
7.8±0.2
, suggests ≤32%
≤32%
of the moment may be attributed to slip on the subduction interface and/or a midcrustal detachment. Likely factors contributing to multifault rupture in the Kaikōura earthquake include (1) the presence of the subduction interface, (2) physical linkages between faults, (3) rupture of geologically immature faults in the south, and (4) inherited geological structure. The estimated recurrence interval for the Kaikōura earthquake is ≥5,000–10,000 yrs
≥5,000–10,000 yrs
, and so it is a relatively rare event. Nevertheless, these findings support the need for continued advances in seismic hazard modeling to ensure that they incorporate multifault ruptures that cross tectonic domain boundaries
Recommended from our members
UKESM1: description and evaluation of the UK Earth System Model
We document the development of the first version of the United Kingdom Earth System Model UKESM1. The model represents a major advance on its predecessor HadGEM2‐ES, with enhancements to all component models and new feedback mechanisms. These include: a new core physical model with a well‐resolved stratosphere; terrestrial biogeochemistry with coupled carbon and nitrogen cycles and enhanced land management; tropospheric‐stratospheric chemistry allowing the holistic simulation of radiative forcing from ozone, methane and nitrous oxide; two‐moment, five‐species, modal aerosol; and ocean biogeochemistry with two‐way coupling to the carbon cycle and atmospheric aerosols. The complexity of coupling between the ocean, land and atmosphere physical climate and biogeochemical cycles in UKESM1 is unprecedented for an Earth system model. We describe in detail the process by which the coupled model was developed and tuned to achieve acceptable performance in key physical and Earth system quantities, and discuss the challenges involved in mitigating biases in a model with complex connections between its components. Overall the model performs well, with a stable pre‐industrial state, and good agreement with observations in the latter period of its historical simulations. However, global mean surface temperature exhibits stronger‐than‐observed cooling from 1950 to 1970, followed by rapid warming from 1980 to 2014. Metrics from idealised simulations show a high climate sensitivity relative to previous generations of models: equilibrium climate sensitivity (ECS) is 5.4 K, transient climate response (TCR) ranges from 2.68 K to 2.85 K, and transient climate response to cumulative emissions (TCRE) is 2.49 K/TtC to 2.66 K/TtC
Macrocyclic coordination chemistry
This chapter reviews the literature published on macrocyclic coordination chemistry during 2010. The aim is to describe the key advances, focusing predominantly on complexes formed with transition metal and lanthanide ions. Porphyrin ligands and supramolecular chemistry are not covered. Trends in the development of macrocyclic chelator design and the impact of the coordination chemistry on both existing and emerging applications are discussed
The Impact of Dual-Tasking on Sentence Comprehension in Children with Specific Language Impairment
Purpose: This study assesses the hypothesis of a limitation in attentional allocation capacity as underlying poor sentence comprehension in children with SLI.
Method: Fifteen children with SLI, 15 age-matched controls, and 15 grammar-matched controls. Sixty sentences were presented in isolation, and 60 sentences were presented with a concurrent non-linguistic target-detection task. If poor attentional allocation capacity is a core deficit in SLI, they should be impaired to a greater extent in the dual task condition relative to the grammatical-age controls. On the contrary, a comparable performance decrement under the dual-task condition in children with SLI and younger language controls would attest of a limitation in attentional allocation capacity in children with SLI that is not disproportionate to their language level.
Results: Sentence comprehension was affected by the dual-task condition to a greater extent in children with SLI relative to age-controls, but not relative to grammatical-controls.
Conclusions: Our study does not support limitations in attentional allocation capacity as representing a core deficit in SLI. Rather, our data show that these children show attentional allocation capacity comparable to that of younger children having similar language level, suggesting that SLI is characterized by a slowed development of both attentional and language domains