21 research outputs found
Late syn- to post-collisional magmatism in Madagascar: the genesis of the Ambalavao and Maevarano Suites
The East African Orogen involves a collage of Proterozoic microcontinents and arc terranes that became wedged between older cratonic blocks during the assembly of Gondwana. The EdiacaranâCambrian Ambalavao and Maevarano Suites in Madagascar were emplaced during the waning orogenic stages and consist of weakly deformed to undeformed plutonic rocks and dykes of mainly porphyritic granite but also gabbro, diorite and charnockite. U-Pb geochronological data date emplacement of the Ambalavao Suite to between ca. 580 Ma and 540 Ma and the Maevarano Suite to between ca. 537 Ma and 522 Ma. Major and trace element concentrations are consistent with emplacement in a syn- to post-collisional tectonic setting as A-type (anorogenic) suites. Oxygen (ÎŽÂčâžO of 5.27â°â7.45â°) and hafnium (ΔHf(t) of â27.8 to â12.3) isotopic data from plutons in the Itremo and Antananarivo Domains are consistent with incorporation of an ancient crustal source. More primitive ÎŽÂčâžO (5.27â°â5.32â°) and ΔHf(t) (+0.0 to +0.2) isotopic values recorded in samples collected from the Ikalamavony Domain demonstrate the isotopic variation of basement sources present in the Malagasy crust. The Hf isotopic composition of Malagasy zircon are unlike more juvenile EdiacaranâCambrian zircon sources elsewhere in the East African Orogen and, as such, Madagascar represents a distinct and identifiable detrital zircon source region in Phanerozoic sedimentary provenance studies. Taken together, these data indicate that high-T crustal anatexis, crustal assimilation and interaction of crustal material with mantle-derived melts were the processes operating during magma emplacement. This magmatism was coeval with polyphase deformation throughout Madagascar during the amalgamation of Gondwana and magmatism is interpreted to reflect lithospheric delamination of an extensive orogenic plateau.Donnelly B. Archibald, Alan S. Collins, John D. Foden, Justin L. Payne, Peter Holden, ThĂ©odore Razakamanan
Neoproterozoic tectonic geography of the south-east Congo Craton in Zambia as deduced from the age and composition of detrital zircons
Available online 10 August 2018The Southern Irumide Belt (SIB) is an orogenic belt consisting of a number of lithologically varied Mesoproterozoic and Neoproterozoic terranes that were thrust upon each other. The belt lies along the southwest margin of the Archaean to Proterozoic Congo Craton, and bears a Neoproterozoic tectono-thermal overprint relating to the NeoproterozoicâCambrian collision between the Congo and Kalahari cratons. It preserves a record of about 500 million years of plate interaction along this part of the Congo margin. Detrital zircon samples from the SIB were analysed for UâPb and LuâHf isotopes, as well as trace element compositions. These data are used to constrain sediment-source relationships between SIB terranes and other Gondwanan terranes such as the local Congo Craton and Irumide belt and wider afield to Madagascar (Azania) and India. These correlations are then used to interpret the Mesoproterozoic to Neoproterozoic affinity of the rocks and evolution of the region. Detrital zircon samples from the CheworeâRufunsa and Kacholola (previously referred to as LuangwaâNyimba) terranes of the SIB yield zircon UâPb age populations and evolved ΔHf(t) values that are similar to the Muva Supergroup found throughout eastern Zambia, primarily correlating with UbendianâUsagaran (ca. 2.05â1.80 Ga) phase magmatism and a cryptic basement terrane that has been suggested to underlie the Bangweulu Block and Irumide Belt. These data suggest that the SIB was depositionally connected to the Congo Craton throughout the Mesoproterozoic. The more eastern NyimbaâSinda terrane of the SIB (previously referred to as PetaukeâSinda terrane) records detrital zircon ages and ΔHf(t) values that correlate with ca. 1.1â1.0 Ga magmatism exposed elsewhere in the SIB and Irumide Belt. We ascribe this difference in age populations to the polyphase development of the province, where the sedimentary and volcanic rocks of the NyimbaâSinda terrane accumulated in extensional basins that developed in the Neoproterozoic. Such deposition would have occurred following late-Mesoproterozoic magmatism that is widespread throughout both the Irumide and Southern Irumide Belts, presently considered to have occurred in response to collision between a possible microcontinental mass and the Irumide Belt. This interpretation implies a multi-staged evolution of the ocean south of the Congo Craton during the mid-Mesoproterozoic to late-Neoproterozoic, which ultimately closed during collision between the Congo and Kalahari cratons.Brandon L. Alessio, Alan S. Collins, Peter Siegfried, Stijn Glorie, Bert De Waele, Justin Payne, Donnelly B. Archibal
A Review of the fossil record of turtles of the clade Baenidae
The fossil record of the turtle clade Baenidae ranges from the Early Cretaceous (AptianâAlbian) to the Eocene. The group is present throughout North America during the Early Cretaceous, but is restricted to the western portions of the continents in the Late Cretaceous and Paleogene. No credible remains of the clade have been reported outside of North America to date. Baenids were warmadapted freshwater aquatic turtles that supported high levels of diversity at times through niche partitioning, particularly by adapting to a broad range of dietary preferences ranging from omnivorous to molluscivorous. Current phylogenies place Baenidae near the split of crown-group Testudines. Within Baenidae three more inclusive, named clades are recognized: Baenodda, Palatobaeninae and Eubaeninae. A taxonomic review of the group concludes that of 49 named taxa, 30 are nomina valida, 12 are nomina invalida and 7 are nomina dubia
Tectonic evolution of an Early Cryogenian late- magmatic basin in central Madagascar
Central and southern Madagascar comprise a number of distinctive Archaean crustal blocks (the Antongil-Masora and Antananarivo domains) overlain by Proterozoic supracrustal sequences, preserved in the East African Orogen. Here, we present UâPb and LuâHf isotopic data for two supracrustal units from detrital and metamorphic zircon grains. The lower sequence is comprised of quartzite and calc-silicate units with a major Palaeoproterozoic detrital zircon source and a minor Archaean contribution with a maximum depositional age of ca. 1780 Ma. This sequence reflects a stable shelf sedimentation within the Antananarivo Domain and is correlated with the Itremo Group. UâPb and Hf data are equivocal in determining the direct sources for the Archaean and early Palaeoproterozoic detrital zircon grains. However, the abundant ca. 2.3â1.8 Ga detrital grains are correlative with the Congo-Tanzania-Bangweulu Block and as these are close to the inferred age of the Itremo Basin, these are interpreted to be single cycle detritus. This implies that the Congo-Tanzania-Bangweulu craton was close to central Madagascar at ca. 1.8â1.6 Ga and the lower sequence would correspond to an originally contiguous late Palaeoproterozoic to early Mesoproterozoic sedimentary basin across central Madagascar. The upper metasedimentary unit has contrasting detrital sources and is represented mostly by biotite-plagioclase paragneiss, with an inferred psammitic protolith interleaved with volcanic/subvolcanic andesitic/rhyolitic dikes. The predominant Tonian-aged population (ca. 860-710 Ma) are igneous zircon grains with ΔHf(t) values varying from â15.1 to â29.2 and T(DM) Hf model ages between ca. 3.4 and 2.6 Ga. These grains were derived from the ca. 850-750 Ma Imorona-Itsindro magmatic suite. Their Neoarchaean-Palaeoproterozoic cores are interpreted as xenocrysts, reinforcing that the Imorona-Itsindro magmatism has a prominent continental reworking component. The probable tectonic setting for this Early Cryogenian sedimentary basin would represent a transition from an intra-arc to an intracontinental setting related to an outboard subduction, partially jammed at ca. 710 Ma due to the subduction of a ridge-transform system. The analogue would be the western US, where the Basin and Range region corresponds to a wide rift associated with a major mantle thermal anomaly. The absence of geological units and structures between ca. 720 and 635 Ma in central Madagascar corroborate with this model for a transition to a transform continental setting. The pre-Gondwana amalgamation convergence in the Ediacaran-Cambrian, that deformed and metamorphosed all units in central Madagascar units, is accounted for by ca. 550 Ma metamorphic rims on zircon grains from the quartzites in the Itremo Group.R.L. Costa, R.S. Schmitt, A.S. Collins, S.E. Armistead, I.V. Gomes, D.B. Archibald, T. Razakamanan