2 research outputs found
Polystyrene Nanopillars with Inbuilt Carbon Nanotubes Enable Synaptic Modulation and Stimulation in Interfaced Neuronal Networks
The use of nanostructured materials and nanosized-topographies has the potential to impact the performance of implantable biodevices, including neural interfaces, enhancing their sensitivity and selectivity, while reducing tissue reactivity. As a result, current trends in biosensor technology require the effective ability to improve devices with controlled nanostructures. Nanoimprint lithography to pattern surfaces with high-density and high aspect ratio nanopillars (NPs) made of polystyrene (PS-NP, insulating), or of a polystyrene/carbon-nanotube nanocomposite (PS-CNT-NP, electrically conductive) are exploited. Both substrates are challenged with cultured primary neurons. They are demonstrated to support the development of suspended synaptic networks at the NPs’ interfaces characterized by a reduction in proliferating neuroglia, and a boost in neuronal emergent electrical activity when compared to flat controls. The authors successfully exploit their conductive PS-CNT-NPs to stimulate cultured cells electrically. The ability of both nanostructured surfaces to interface tissue explants isolated from the mouse spinal cord is then tested. The integration of the neuronal circuits with the NP topology, the suspended nature of the cultured networks, the reduced neuroglia formation, and the higher network activity together with the ability to deliver electrical stimuli via PS-CNT-NP reveal such platforms as promising designs to implement on neuro-prosthetic or neurostimulation devices
Interfacing Neurons with Nanostructured Electrodes Modulates Synaptic Circuit Features
Understanding neural physiopathology requires advances in nanotechnology-based interfaces, engineered to monitor the functional state of mammalian nervous cells. Such interfaces typically contain nanometer-size features for stimulation and recording as in cell-non-invasive extracellular microelectrode arrays. In such devices, it turns crucial to understand specific interactions of neural cells with physicochemical features of electrodes, which could be designed to optimize performance. Herein, versatile flexible nanostructured electrodes covered by arrays of metallic nanowires are fabricated and used to investigate the role of chemical composition and nanotopography on rat brain cells in vitro. By using Au and Ni as exemplary materials, nanostructure and chemical composition are demonstrated to play major roles in the interaction of neural cells with electrodes. Nanostructured devices are interfaced to rat embryonic cortical cells and postnatal hippocampal neurons forming synaptic circuits. It is shown that Au-based electrodes behave similarly to controls. Contrarily, Ni-based nanostructured electrodes increase cell survival, boost neuronal differentiation, and reduce glial cells with respect to flat counterparts. Nonetheless, Au-based electrodes perform superiorly compared to Ni-based ones. Under electrical stimulation, Au-based nanostructured substrates evoke intracellular calcium dynamics compatible with neural networks activation. These studies highlight the opportunity for these electrodes to excite a silent neural network by direct neuronal membranes depolarization