25 research outputs found
The genetic consequences of population marginality: a case study in maritime pine
âąAim: Marginal tree populations, either those located at the edges of the species' range or in suboptimal environments, are often a valuable genetic resource for biological conservation. However, there is a lack of knowledge about the genetic consequences of population marginality, estimated across entire species' ranges. Our study addresses this gap by providing information about several genetic indicators and their variability in marginal and core populations identified using quantitative marginality indices.
âąLocation: Southwestern Europe and North Africa.
âąMethods: Using 10,185 SNPs across 82 populations of maritime pine (Pinus pinaster Ait.), a widespread conifer characterised by a fragmented range, we modelled the relationship of seven genetic indicators potentially related to population evolutionary resilience, namely genetic diversity (based on both all SNPs and outlier SNPs), inbreeding, genetic differentiation, recessive genetic load and genomic offset, with population geographical, demo-historical and ecological marginality (as estimated by nine quantitative indices). Models were constructed for both regional (introducing gene pool as a random factor) and range-wide spatial scales.
âąResults: We showed a trend towards decreasing overall genetic diversity and increasing differentiation with geographic marginality, supporting the centre-periphery hypothesis (CPH). However, we found no correlation between population inbreeding and marginality, while geographically marginal populations had a lower recessive genetic load (only models without the gene pool effect). Ecologically marginal populations had a higher genomic offset, suggesting higher maladaptation to future climate, albeit some of these populations also had high genetic diversity for climate outliers.
âąMain Conclusions: Overall genetic diversity (but not outlier-based estimates) and differentiation patterns support the CPH. Ecologically marginal populations and those at the southern edge could be more vulnerable to climate change due to higher climate maladaptation, as predicted by genomic offsets, and/or lower potentially adaptive genetic diversity. This risk is exacerbated by typically small effective population sizes and increasing human impact in marginal populations
Accumulation and transport of microbial-size particles in a pressure protected model burn unit: CFD simulations and experimental evidence
<p>Abstract</p> <p>Background</p> <p>Controlling airborne contamination is of major importance in burn units because of the high susceptibility of burned patients to infections and the unique environmental conditions that can accentuate the infection risk. In particular the required elevated temperatures in the patient room can create thermal convection flows which can transport airborne contaminates throughout the unit. In order to estimate this risk and optimize the design of an intensive care room intended to host severely burned patients, we have relied on a computational fluid dynamic methodology (CFD).</p> <p>Methods</p> <p>The study was carried out in 4 steps: i) patient room design, ii) CFD simulations of patient room design to model air flows throughout the patient room, adjacent anterooms and the corridor, iii) construction of a prototype room and subsequent experimental studies to characterize its performance iv) qualitative comparison of the tendencies between CFD prediction and experimental results. The Electricité De France (EDF) open-source software <it>Code_Saturne</it><sup>Ÿ </sup>(<url>http://www.code-saturne.org</url>) was used and CFD simulations were conducted with an hexahedral mesh containing about 300 000 computational cells. The computational domain included the treatment room and two anterooms including equipment, staff and patient. Experiments with inert aerosol particles followed by time-resolved particle counting were conducted in the prototype room for comparison with the CFD observations.</p> <p>Results</p> <p>We found that thermal convection can create contaminated zones near the ceiling of the room, which can subsequently lead to contaminate transfer in adjacent rooms. Experimental confirmation of these phenomena agreed well with CFD predictions and showed that particles greater than one micron (i.e. bacterial or fungal spore sizes) can be influenced by these thermally induced flows. When the temperature difference between rooms was 7°C, a significant contamination transfer was observed to enter into the positive pressure room when the access door was opened, while 2°C had little effect. Based on these findings the constructed burn unit was outfitted with supplemental air exhaust ducts over the doors to compensate for the thermal convective flows.</p> <p>Conclusions</p> <p>CFD simulations proved to be a particularly useful tool for the design and optimization of a burn unit treatment room. Our results, which have been confirmed qualitatively by experimental investigation, stressed that airborne transfer of microbial size particles via thermal convection flows are able to bypass the protective overpressure in the patient room, which can represent a potential risk of cross contamination between rooms in protected environments.</p
Understanding the origin and predicting adaptive genetic variation at large scale in the genomic era : a case study in maritime pine
Le changement climatique impacte dĂ©jĂ les populations dâarbres forestiers, comme en tĂ©moignent les Ă©vĂšnements de mortalitĂ© de plus en plus frĂ©quents et les migrations vers le nord et en altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans prĂ©cĂ©dent du changement climatique. Dans ce contexte, Ă©valuer le potentiel des populations d'arbres forestiers Ă persister face au changement climatique est nĂ©cessaire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique afin dâassocier la variation des traits quantitatifs Ă de larges gradients environnementaux, permettant ainsi de mieux comprendre l'origine de la variation des traits quantitatifs et d'identifier les populations qui pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les donnĂ©es gĂ©nomiques provenant des outils de sĂ©quençage de nouvelle gĂ©nĂ©ration rĂ©volutionnent actuellement notre comprĂ©hension de la composante gĂ©nĂ©tique des traits quantitatifs et stimulent le dĂ©veloppement de nouvelles mĂ©thodes statistiques visant Ă anticiper les rĂ©ponses des populations aux conditions changeantes. Dans les approches basĂ©es sur les traits, la combinaison des donnĂ©es phĂ©notypiques et climatiques des jardins communs avec les donnĂ©es gĂ©nomiques semble ĂȘtre une approche particuliĂšrement pertinente afin de sĂ©parer les composantes plastiques et gĂ©nĂ©tiques de la variation des traits, ainsi que les processus neutres et adaptatifs sous-jacents, ce qui est prometteur vis-Ă -vis de lâamĂ©lioration des prĂ©dictions de la variation des traits Ă grande Ă©chelle. En gĂ©nĂ©tique du paysage, les donnĂ©es gĂ©nomiques et environnementales peuvent ĂȘtre combinĂ©es afin dâidentifier les relations gĂšnes-environnement actuelles, qui servent ensuite Ă estimer le changement gĂ©nĂ©tique nĂ©cessaire au maintien des relations gĂšnes-environnement dans les climats futurs, une mĂ©trique appelĂ©e âdĂ©calage gĂ©nomiqueâ. Dans cette thĂšse, le pin maritime (Pinus pinaster Ait), un conifĂšre Ă longue durĂ©e de vie originaire de la partie occidentale du bassin mĂ©diterranĂ©en, est utilisĂ© comme Ă©tude de cas afin dâĂ©valuer comment les donnĂ©es gĂ©nomiques pourraient contribuer Ă anticiper les rĂ©ponses des populations au changement climatique. Le premier chapitre vise Ă comprendre comment la variation gĂ©nĂ©tique quantitative est maintenue au sein des populations en testant trois hypothĂšses concurrentes, mais non mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes prĂ©sentent une variation gĂ©nĂ©tique quantitative plus Ă©levĂ©e en raison de l'introgression en provenance d'autres pools gĂ©nĂ©tiques, (ii) la variation gĂ©nĂ©tique quantitative est plus faible dans les populations provenant d'environnements plus difficiles (c'est-Ă -dire subissant une sĂ©lection plus forte), et (iii) la variation gĂ©nĂ©tique quantitative est plus Ă©levĂ©e dans les populations provenant d'environnements spatialement hĂ©tĂ©rogĂšnes. Le deuxiĂšme chapitre vise Ă dĂ©terminer si des modĂšles combinant des donnĂ©es climatiques et gĂ©nomiques pourraient capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi amĂ©liorer les prĂ©dictions Ă grande Ă©chelle, en particulier par rapport aux prĂ©dictions des fonctions de rĂ©ponse des populations basĂ©es sur le climat qui sont actuellement couramment utilisĂ©es chez les arbres forestiers. Le troisiĂšme chapitre a pour but dâidentifier les populations dont les relations gĂšne-environnement seront les plus perturbĂ©es par le changement climatique (c'est-Ă -dire les populations Ă risque de maladaptation climatique Ă court terme) en utilisant l'approche du dĂ©calage gĂ©nomique, et Ă valider les prĂ©dictions qui en rĂ©sultent (c'est-Ă -dire que les populations avec un dĂ©calage gĂ©nomique Ă©levĂ© devraient avoir une valeur adaptative plus faible) Ă la fois dans les populations naturelles et dans des conditions de jardins communs.Climate change is already affecting forest tree populations, as evidenced by increased forest die-off events, background mortality and the northward and upward migration of tree populations. However, forest tree populations may not be able to migrate fast enough to track the unprecedented rate of climate change. In this context, it is thus relevant to assess the potential of forest tree populations to persist under climate change. In forest trees, a long history of common gardens has provided a unique framework to associate population-specific quantitative-trait variation with large environmental gradients, resulting in a better understanding of the origin of quantitative-trait variation and the identification of populations that may grow and survive better, or worse, under future climates. In addition, genomic data from next-generation sequencing (NGS) tools is currently revolutionizing our understanding of the genetic component of quantitative traits and is subsequently driving the development of new statistical methods to anticipate the population responses to changing conditions. In trait-based approaches, combining phenotypic and climatic data from common gardens with genomic data appears to be a particularly relevant approach to separate the plastic and genetic components of trait variation, as well as the underlying neutral and adaptive processes. This is promising towards improving the predictions of trait variation across the species ranges. In landscape genetics, genomic and environmental data can be combined to identify current gene-environment relationships across the landscape, which are then used to estimate the genetic change required to maintain the current gene-environment relationships under future climates, a metric often referred to as âgenomic offsetâ. In this PhD, maritime pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean Basin, is used as a case study to investigate how genomic data could contribute to anticipating population responses to climate change. The first chapter aims to understand how quantitative genetic variation is maintained within populations by testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from spatially heterogeneous environments. The second chapter investigates whether models combining climate and genomic data could capture the underlying drivers of height-growth variation, and thus improve predictions at large geographical scales, especially compared to the predictions from climate-based population response functions that are currently commonly used in forest trees. The third chapter aims to identify the populations whose gene-environment relationships will be the most disrupted under climate change (i.e. populations at risk of short-term climate maladaptation) using the genomic offset approach, and to validate the resulting predictions (i.e. populations with high genomic offset are expected to show a decrease in fitness) both in natural populations and in common garden conditions. Finally, the present PhD work investigates different ways to integrate genomic information into current modeling approaches, therefore contributing to the development of a much-needed robust framework to make reliable predictions and to determine when and to what extent genomics can help in making decisions in conservation strategies or in the management of forest ecosystems
Comprendre lâorigine et prĂ©dire la variation gĂ©nĂ©tique adaptative Ă large Ă©chelle Ă lâĂšre de la gĂ©nomique : une Ă©tude de cas chez le pin maritime
Climate change is already affecting forest tree populations, as evidenced by increased forest die-off events, background mortality and the northward and upward migration of tree populations. However, forest tree populations may not be able to migrate fast enough to track the unprecedented rate of climate change. In this context, it is thus relevant to assess the potential of forest tree populations to persist under climate change. In forest trees, a long history of common gardens has provided a unique framework to associate population-specific quantitative-trait variation with large environmental gradients, resulting in a better understanding of the origin of quantitative-trait variation and the identification of populations that may grow and survive better, or worse, under future climates. In addition, genomic data from next-generation sequencing (NGS) tools is currently revolutionizing our understanding of the genetic component of quantitative traits and is subsequently driving the development of new statistical methods to anticipate the population responses to changing conditions. In trait-based approaches, combining phenotypic and climatic data from common gardens with genomic data appears to be a particularly relevant approach to separate the plastic and genetic components of trait variation, as well as the underlying neutral and adaptive processes. This is promising towards improving the predictions of trait variation across the species ranges. In landscape genetics, genomic and environmental data can be combined to identify current gene-environment relationships across the landscape, which are then used to estimate the genetic change required to maintain the current gene-environment relationships under future climates, a metric often referred to as âgenomic offsetâ. In this PhD, maritime pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean Basin, is used as a case study to investigate how genomic data could contribute to anticipating population responses to climate change. The first chapter aims to understand how quantitative genetic variation is maintained within populations by testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from spatially heterogeneous environments. The second chapter investigates whether models combining climate and genomic data could capture the underlying drivers of height-growth variation, and thus improve predictions at large geographical scales, especially compared to the predictions from climate-based population response functions that are currently commonly used in forest trees. The third chapter aims to identify the populations whose gene-environment relationships will be the most disrupted under climate change (i.e. populations at risk of short-term climate maladaptation) using the genomic offset approach, and to validate the resulting predictions (i.e. populations with high genomic offset are expected to show a decrease in fitness) both in natural populations and in common garden conditions. Finally, the present PhD work investigates different ways to integrate genomic information into current modeling approaches, therefore contributing to the development of a much-needed robust framework to make reliable predictions and to determine when and to what extent genomics can help in making decisions in conservation strategies or in the management of forest ecosystems.Le changement climatique impacte dĂ©jĂ les populations dâarbres forestiers, comme en tĂ©moignent les Ă©vĂšnements de mortalitĂ© de plus en plus frĂ©quents et les migrations vers le nord et en altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans prĂ©cĂ©dent du changement climatique. Dans ce contexte, Ă©valuer le potentiel des populations d'arbres forestiers Ă persister face au changement climatique est nĂ©cessaire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique afin dâassocier la variation des traits quantitatifs Ă de larges gradients environnementaux, permettant ainsi de mieux comprendre l'origine de la variation des traits quantitatifs et d'identifier les populations qui pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les donnĂ©es gĂ©nomiques provenant des outils de sĂ©quençage de nouvelle gĂ©nĂ©ration rĂ©volutionnent actuellement notre comprĂ©hension de la composante gĂ©nĂ©tique des traits quantitatifs et stimulent le dĂ©veloppement de nouvelles mĂ©thodes statistiques visant Ă anticiper les rĂ©ponses des populations aux conditions changeantes. Dans les approches basĂ©es sur les traits, la combinaison des donnĂ©es phĂ©notypiques et climatiques des jardins communs avec les donnĂ©es gĂ©nomiques semble ĂȘtre une approche particuliĂšrement pertinente afin de sĂ©parer les composantes plastiques et gĂ©nĂ©tiques de la variation des traits, ainsi que les processus neutres et adaptatifs sous-jacents, ce qui est prometteur vis-Ă -vis de lâamĂ©lioration des prĂ©dictions de la variation des traits Ă grande Ă©chelle. En gĂ©nĂ©tique du paysage, les donnĂ©es gĂ©nomiques et environnementales peuvent ĂȘtre combinĂ©es afin dâidentifier les relations gĂšnes-environnement actuelles, qui servent ensuite Ă estimer le changement gĂ©nĂ©tique nĂ©cessaire au maintien des relations gĂšnes-environnement dans les climats futurs, une mĂ©trique appelĂ©e âdĂ©calage gĂ©nomiqueâ. Dans cette thĂšse, le pin maritime (Pinus pinaster Ait), un conifĂšre Ă longue durĂ©e de vie originaire de la partie occidentale du bassin mĂ©diterranĂ©en, est utilisĂ© comme Ă©tude de cas afin dâĂ©valuer comment les donnĂ©es gĂ©nomiques pourraient contribuer Ă anticiper les rĂ©ponses des populations au changement climatique. Le premier chapitre vise Ă comprendre comment la variation gĂ©nĂ©tique quantitative est maintenue au sein des populations en testant trois hypothĂšses concurrentes, mais non mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes prĂ©sentent une variation gĂ©nĂ©tique quantitative plus Ă©levĂ©e en raison de l'introgression en provenance d'autres pools gĂ©nĂ©tiques, (ii) la variation gĂ©nĂ©tique quantitative est plus faible dans les populations provenant d'environnements plus difficiles (c'est-Ă -dire subissant une sĂ©lection plus forte), et (iii) la variation gĂ©nĂ©tique quantitative est plus Ă©levĂ©e dans les populations provenant d'environnements spatialement hĂ©tĂ©rogĂšnes. Le deuxiĂšme chapitre vise Ă dĂ©terminer si des modĂšles combinant des donnĂ©es climatiques et gĂ©nomiques pourraient capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi amĂ©liorer les prĂ©dictions Ă grande Ă©chelle, en particulier par rapport aux prĂ©dictions des fonctions de rĂ©ponse des populations basĂ©es sur le climat qui sont actuellement couramment utilisĂ©es chez les arbres forestiers. Le troisiĂšme chapitre a pour but dâidentifier les populations dont les relations gĂšne-environnement seront les plus perturbĂ©es par le changement climatique (c'est-Ă -dire les populations Ă risque de maladaptation climatique Ă court terme) en utilisant l'approche du dĂ©calage gĂ©nomique, et Ă valider les prĂ©dictions qui en rĂ©sultent (c'est-Ă -dire que les populations avec un dĂ©calage gĂ©nomique Ă©levĂ© devraient avoir une valeur adaptative plus faible) Ă la fois dans les populations naturelles et dans des conditions de jardins communs
Understanding the origin and predicting adaptive genetic variation at large scale in the genomic era : a case study in maritime pine
Le changement climatique impacte dĂ©jĂ les populations dâarbres forestiers, comme en tĂ©moignent les Ă©vĂšnements de mortalitĂ© de plus en plus frĂ©quents et les migrations vers le nord et en altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans prĂ©cĂ©dent du changement climatique. Dans ce contexte, Ă©valuer le potentiel des populations d'arbres forestiers Ă persister face au changement climatique est nĂ©cessaire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique afin dâassocier la variation des traits quantitatifs Ă de larges gradients environnementaux, permettant ainsi de mieux comprendre l'origine de la variation des traits quantitatifs et d'identifier les populations qui pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les donnĂ©es gĂ©nomiques provenant des outils de sĂ©quençage de nouvelle gĂ©nĂ©ration rĂ©volutionnent actuellement notre comprĂ©hension de la composante gĂ©nĂ©tique des traits quantitatifs et stimulent le dĂ©veloppement de nouvelles mĂ©thodes statistiques visant Ă anticiper les rĂ©ponses des populations aux conditions changeantes. Dans les approches basĂ©es sur les traits, la combinaison des donnĂ©es phĂ©notypiques et climatiques des jardins communs avec les donnĂ©es gĂ©nomiques semble ĂȘtre une approche particuliĂšrement pertinente afin de sĂ©parer les composantes plastiques et gĂ©nĂ©tiques de la variation des traits, ainsi que les processus neutres et adaptatifs sous-jacents, ce qui est prometteur vis-Ă -vis de lâamĂ©lioration des prĂ©dictions de la variation des traits Ă grande Ă©chelle. En gĂ©nĂ©tique du paysage, les donnĂ©es gĂ©nomiques et environnementales peuvent ĂȘtre combinĂ©es afin dâidentifier les relations gĂšnes-environnement actuelles, qui servent ensuite Ă estimer le changement gĂ©nĂ©tique nĂ©cessaire au maintien des relations gĂšnes-environnement dans les climats futurs, une mĂ©trique appelĂ©e âdĂ©calage gĂ©nomiqueâ. Dans cette thĂšse, le pin maritime (Pinus pinaster Ait), un conifĂšre Ă longue durĂ©e de vie originaire de la partie occidentale du bassin mĂ©diterranĂ©en, est utilisĂ© comme Ă©tude de cas afin dâĂ©valuer comment les donnĂ©es gĂ©nomiques pourraient contribuer Ă anticiper les rĂ©ponses des populations au changement climatique. Le premier chapitre vise Ă comprendre comment la variation gĂ©nĂ©tique quantitative est maintenue au sein des populations en testant trois hypothĂšses concurrentes, mais non mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes prĂ©sentent une variation gĂ©nĂ©tique quantitative plus Ă©levĂ©e en raison de l'introgression en provenance d'autres pools gĂ©nĂ©tiques, (ii) la variation gĂ©nĂ©tique quantitative est plus faible dans les populations provenant d'environnements plus difficiles (c'est-Ă -dire subissant une sĂ©lection plus forte), et (iii) la variation gĂ©nĂ©tique quantitative est plus Ă©levĂ©e dans les populations provenant d'environnements spatialement hĂ©tĂ©rogĂšnes. Le deuxiĂšme chapitre vise Ă dĂ©terminer si des modĂšles combinant des donnĂ©es climatiques et gĂ©nomiques pourraient capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi amĂ©liorer les prĂ©dictions Ă grande Ă©chelle, en particulier par rapport aux prĂ©dictions des fonctions de rĂ©ponse des populations basĂ©es sur le climat qui sont actuellement couramment utilisĂ©es chez les arbres forestiers. Le troisiĂšme chapitre a pour but dâidentifier les populations dont les relations gĂšne-environnement seront les plus perturbĂ©es par le changement climatique (c'est-Ă -dire les populations Ă risque de maladaptation climatique Ă court terme) en utilisant l'approche du dĂ©calage gĂ©nomique, et Ă valider les prĂ©dictions qui en rĂ©sultent (c'est-Ă -dire que les populations avec un dĂ©calage gĂ©nomique Ă©levĂ© devraient avoir une valeur adaptative plus faible) Ă la fois dans les populations naturelles et dans des conditions de jardins communs.Climate change is already affecting forest tree populations, as evidenced by increased forest die-off events, background mortality and the northward and upward migration of tree populations. However, forest tree populations may not be able to migrate fast enough to track the unprecedented rate of climate change. In this context, it is thus relevant to assess the potential of forest tree populations to persist under climate change. In forest trees, a long history of common gardens has provided a unique framework to associate population-specific quantitative-trait variation with large environmental gradients, resulting in a better understanding of the origin of quantitative-trait variation and the identification of populations that may grow and survive better, or worse, under future climates. In addition, genomic data from next-generation sequencing (NGS) tools is currently revolutionizing our understanding of the genetic component of quantitative traits and is subsequently driving the development of new statistical methods to anticipate the population responses to changing conditions. In trait-based approaches, combining phenotypic and climatic data from common gardens with genomic data appears to be a particularly relevant approach to separate the plastic and genetic components of trait variation, as well as the underlying neutral and adaptive processes. This is promising towards improving the predictions of trait variation across the species ranges. In landscape genetics, genomic and environmental data can be combined to identify current gene-environment relationships across the landscape, which are then used to estimate the genetic change required to maintain the current gene-environment relationships under future climates, a metric often referred to as âgenomic offsetâ. In this PhD, maritime pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean Basin, is used as a case study to investigate how genomic data could contribute to anticipating population responses to climate change. The first chapter aims to understand how quantitative genetic variation is maintained within populations by testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from spatially heterogeneous environments. The second chapter investigates whether models combining climate and genomic data could capture the underlying drivers of height-growth variation, and thus improve predictions at large geographical scales, especially compared to the predictions from climate-based population response functions that are currently commonly used in forest trees. The third chapter aims to identify the populations whose gene-environment relationships will be the most disrupted under climate change (i.e. populations at risk of short-term climate maladaptation) using the genomic offset approach, and to validate the resulting predictions (i.e. populations with high genomic offset are expected to show a decrease in fitness) both in natural populations and in common garden conditions. Finally, the present PhD work investigates different ways to integrate genomic information into current modeling approaches, therefore contributing to the development of a much-needed robust framework to make reliable predictions and to determine when and to what extent genomics can help in making decisions in conservation strategies or in the management of forest ecosystems
Understanding the origin and predicting adaptive genetic variation at large scale in the genomic era : a case study in maritime pine
Le changement climatique impacte dĂ©jĂ les populations dâarbres forestiers, comme en tĂ©moignent les Ă©vĂšnements de mortalitĂ© de plus en plus frĂ©quents et les migrations vers le nord et en altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans prĂ©cĂ©dent du changement climatique. Dans ce contexte, Ă©valuer le potentiel des populations d'arbres forestiers Ă persister face au changement climatique est nĂ©cessaire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique afin dâassocier la variation des traits quantitatifs Ă de larges gradients environnementaux, permettant ainsi de mieux comprendre l'origine de la variation des traits quantitatifs et d'identifier les populations qui pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les donnĂ©es gĂ©nomiques provenant des outils de sĂ©quençage de nouvelle gĂ©nĂ©ration rĂ©volutionnent actuellement notre comprĂ©hension de la composante gĂ©nĂ©tique des traits quantitatifs et stimulent le dĂ©veloppement de nouvelles mĂ©thodes statistiques visant Ă anticiper les rĂ©ponses des populations aux conditions changeantes. Dans les approches basĂ©es sur les traits, la combinaison des donnĂ©es phĂ©notypiques et climatiques des jardins communs avec les donnĂ©es gĂ©nomiques semble ĂȘtre une approche particuliĂšrement pertinente afin de sĂ©parer les composantes plastiques et gĂ©nĂ©tiques de la variation des traits, ainsi que les processus neutres et adaptatifs sous-jacents, ce qui est prometteur vis-Ă -vis de lâamĂ©lioration des prĂ©dictions de la variation des traits Ă grande Ă©chelle. En gĂ©nĂ©tique du paysage, les donnĂ©es gĂ©nomiques et environnementales peuvent ĂȘtre combinĂ©es afin dâidentifier les relations gĂšnes-environnement actuelles, qui servent ensuite Ă estimer le changement gĂ©nĂ©tique nĂ©cessaire au maintien des relations gĂšnes-environnement dans les climats futurs, une mĂ©trique appelĂ©e âdĂ©calage gĂ©nomiqueâ. Dans cette thĂšse, le pin maritime (Pinus pinaster Ait), un conifĂšre Ă longue durĂ©e de vie originaire de la partie occidentale du bassin mĂ©diterranĂ©en, est utilisĂ© comme Ă©tude de cas afin dâĂ©valuer comment les donnĂ©es gĂ©nomiques pourraient contribuer Ă anticiper les rĂ©ponses des populations au changement climatique. Le premier chapitre vise Ă comprendre comment la variation gĂ©nĂ©tique quantitative est maintenue au sein des populations en testant trois hypothĂšses concurrentes, mais non mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes prĂ©sentent une variation gĂ©nĂ©tique quantitative plus Ă©levĂ©e en raison de l'introgression en provenance d'autres pools gĂ©nĂ©tiques, (ii) la variation gĂ©nĂ©tique quantitative est plus faible dans les populations provenant d'environnements plus difficiles (c'est-Ă -dire subissant une sĂ©lection plus forte), et (iii) la variation gĂ©nĂ©tique quantitative est plus Ă©levĂ©e dans les populations provenant d'environnements spatialement hĂ©tĂ©rogĂšnes. Le deuxiĂšme chapitre vise Ă dĂ©terminer si des modĂšles combinant des donnĂ©es climatiques et gĂ©nomiques pourraient capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi amĂ©liorer les prĂ©dictions Ă grande Ă©chelle, en particulier par rapport aux prĂ©dictions des fonctions de rĂ©ponse des populations basĂ©es sur le climat qui sont actuellement couramment utilisĂ©es chez les arbres forestiers. Le troisiĂšme chapitre a pour but dâidentifier les populations dont les relations gĂšne-environnement seront les plus perturbĂ©es par le changement climatique (c'est-Ă -dire les populations Ă risque de maladaptation climatique Ă court terme) en utilisant l'approche du dĂ©calage gĂ©nomique, et Ă valider les prĂ©dictions qui en rĂ©sultent (c'est-Ă -dire que les populations avec un dĂ©calage gĂ©nomique Ă©levĂ© devraient avoir une valeur adaptative plus faible) Ă la fois dans les populations naturelles et dans des conditions de jardins communs.Climate change is already affecting forest tree populations, as evidenced by increased forest die-off events, background mortality and the northward and upward migration of tree populations. However, forest tree populations may not be able to migrate fast enough to track the unprecedented rate of climate change. In this context, it is thus relevant to assess the potential of forest tree populations to persist under climate change. In forest trees, a long history of common gardens has provided a unique framework to associate population-specific quantitative-trait variation with large environmental gradients, resulting in a better understanding of the origin of quantitative-trait variation and the identification of populations that may grow and survive better, or worse, under future climates. In addition, genomic data from next-generation sequencing (NGS) tools is currently revolutionizing our understanding of the genetic component of quantitative traits and is subsequently driving the development of new statistical methods to anticipate the population responses to changing conditions. In trait-based approaches, combining phenotypic and climatic data from common gardens with genomic data appears to be a particularly relevant approach to separate the plastic and genetic components of trait variation, as well as the underlying neutral and adaptive processes. This is promising towards improving the predictions of trait variation across the species ranges. In landscape genetics, genomic and environmental data can be combined to identify current gene-environment relationships across the landscape, which are then used to estimate the genetic change required to maintain the current gene-environment relationships under future climates, a metric often referred to as âgenomic offsetâ. In this PhD, maritime pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean Basin, is used as a case study to investigate how genomic data could contribute to anticipating population responses to climate change. The first chapter aims to understand how quantitative genetic variation is maintained within populations by testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from spatially heterogeneous environments. The second chapter investigates whether models combining climate and genomic data could capture the underlying drivers of height-growth variation, and thus improve predictions at large geographical scales, especially compared to the predictions from climate-based population response functions that are currently commonly used in forest trees. The third chapter aims to identify the populations whose gene-environment relationships will be the most disrupted under climate change (i.e. populations at risk of short-term climate maladaptation) using the genomic offset approach, and to validate the resulting predictions (i.e. populations with high genomic offset are expected to show a decrease in fitness) both in natural populations and in common garden conditions. Finally, the present PhD work investigates different ways to integrate genomic information into current modeling approaches, therefore contributing to the development of a much-needed robust framework to make reliable predictions and to determine when and to what extent genomics can help in making decisions in conservation strategies or in the management of forest ecosystems
Comprendre lâorigine et prĂ©dire la variation gĂ©nĂ©tique adaptative Ă large Ă©chelle Ă lâĂšre de la gĂ©nomique : une Ă©tude de cas chez le pin maritime
Le changement climatique impacte dĂ©jĂ les populations dâarbres forestiers, comme en tĂ©moignent les Ă©vĂšnements de mortalitĂ© de plus en plus frĂ©quents et les migrations vers le nord et en altitude. Cependant, les populations pourraient ne pas migrer assez rapidement face au rythme sans prĂ©cĂ©dent du changement climatique. Dans ce contexte, Ă©valuer le potentiel des populations d'arbres forestiers Ă persister face au changement climatique est nĂ©cessaire. Chez les arbres forestiers, une longue histoire de jardins communs a fourni un cadre unique afin dâassocier la variation des traits quantitatifs Ă de larges gradients environnementaux, permettant ainsi de mieux comprendre l'origine de la variation des traits quantitatifs et d'identifier les populations qui pourraient grandir et survivre mieux, ou moins bien, sous les climats futurs. Les donnĂ©es gĂ©nomiques provenant des outils de sĂ©quençage de nouvelle gĂ©nĂ©ration rĂ©volutionnent actuellement notre comprĂ©hension de la composante gĂ©nĂ©tique des traits quantitatifs et stimulent le dĂ©veloppement de nouvelles mĂ©thodes statistiques visant Ă anticiper les rĂ©ponses des populations aux conditions changeantes. Dans les approches basĂ©es sur les traits, la combinaison des donnĂ©es phĂ©notypiques et climatiques des jardins communs avec les donnĂ©es gĂ©nomiques semble ĂȘtre une approche particuliĂšrement pertinente afin de sĂ©parer les composantes plastiques et gĂ©nĂ©tiques de la variation des traits, ainsi que les processus neutres et adaptatifs sous-jacents, ce qui est prometteur vis-Ă -vis de lâamĂ©lioration des prĂ©dictions de la variation des traits Ă grande Ă©chelle. En gĂ©nĂ©tique du paysage, les donnĂ©es gĂ©nomiques et environnementales peuvent ĂȘtre combinĂ©es afin dâidentifier les relations gĂšnes-environnement actuelles, qui servent ensuite Ă estimer le changement gĂ©nĂ©tique nĂ©cessaire au maintien des relations gĂšnes-environnement dans les climats futurs, une mĂ©trique appelĂ©e âdĂ©calage gĂ©nomiqueâ. Dans cette thĂšse, le pin maritime (Pinus pinaster Ait), un conifĂšre Ă longue durĂ©e de vie originaire de la partie occidentale du bassin mĂ©diterranĂ©en, est utilisĂ© comme Ă©tude de cas afin dâĂ©valuer comment les donnĂ©es gĂ©nomiques pourraient contribuer Ă anticiper les rĂ©ponses des populations au changement climatique. Le premier chapitre vise Ă comprendre comment la variation gĂ©nĂ©tique quantitative est maintenue au sein des populations en testant trois hypothĂšses concurrentes, mais non mutuellement exclusives, sur plusieurs traits : (i) les populations admixtes prĂ©sentent une variation gĂ©nĂ©tique quantitative plus Ă©levĂ©e en raison de l'introgression en provenance d'autres pools gĂ©nĂ©tiques, (ii) la variation gĂ©nĂ©tique quantitative est plus faible dans les populations provenant d'environnements plus difficiles (c'est-Ă -dire subissant une sĂ©lection plus forte), et (iii) la variation gĂ©nĂ©tique quantitative est plus Ă©levĂ©e dans les populations provenant d'environnements spatialement hĂ©tĂ©rogĂšnes. Le deuxiĂšme chapitre vise Ă dĂ©terminer si des modĂšles combinant des donnĂ©es climatiques et gĂ©nomiques pourraient capturer les facteurs sous-jacents de la variation de la croissance en hauteur, et ainsi amĂ©liorer les prĂ©dictions Ă grande Ă©chelle, en particulier par rapport aux prĂ©dictions des fonctions de rĂ©ponse des populations basĂ©es sur le climat qui sont actuellement couramment utilisĂ©es chez les arbres forestiers. Le troisiĂšme chapitre a pour but dâidentifier les populations dont les relations gĂšne-environnement seront les plus perturbĂ©es par le changement climatique (c'est-Ă -dire les populations Ă risque de maladaptation climatique Ă court terme) en utilisant l'approche du dĂ©calage gĂ©nomique, et Ă valider les prĂ©dictions qui en rĂ©sultent (c'est-Ă -dire que les populations avec un dĂ©calage gĂ©nomique Ă©levĂ© devraient avoir une valeur adaptative plus faible) Ă la fois dans les populations naturelles et dans des conditions de jardins communs.Climate change is already affecting forest tree populations, as evidenced by increased forest die-off events, background mortality and the northward and upward migration of tree populations. However, forest tree populations may not be able to migrate fast enough to track the unprecedented rate of climate change. In this context, it is thus relevant to assess the potential of forest tree populations to persist under climate change. In forest trees, a long history of common gardens has provided a unique framework to associate population-specific quantitative-trait variation with large environmental gradients, resulting in a better understanding of the origin of quantitative-trait variation and the identification of populations that may grow and survive better, or worse, under future climates. In addition, genomic data from next-generation sequencing (NGS) tools is currently revolutionizing our understanding of the genetic component of quantitative traits and is subsequently driving the development of new statistical methods to anticipate the population responses to changing conditions. In trait-based approaches, combining phenotypic and climatic data from common gardens with genomic data appears to be a particularly relevant approach to separate the plastic and genetic components of trait variation, as well as the underlying neutral and adaptive processes. This is promising towards improving the predictions of trait variation across the species ranges. In landscape genetics, genomic and environmental data can be combined to identify current gene-environment relationships across the landscape, which are then used to estimate the genetic change required to maintain the current gene-environment relationships under future climates, a metric often referred to as âgenomic offsetâ. In this PhD, maritime pine (Pinus pinaster Ait), a long-lived conifer native to the western part of the Mediterranean Basin, is used as a case study to investigate how genomic data could contribute to anticipating population responses to climate change. The first chapter aims to understand how quantitative genetic variation is maintained within populations by testing three competing, but not mutually exclusive, hypotheses for several traits: (i) admixed populations have higher quantitative genetic variation due to introgression from other gene pools, (ii) quantitative genetic variation is lower in populations from harsher environments (i.e. experiencing stronger selection), and (iii) quantitative genetic variation is higher in populations from spatially heterogeneous environments. The second chapter investigates whether models combining climate and genomic data could capture the underlying drivers of height-growth variation, and thus improve predictions at large geographical scales, especially compared to the predictions from climate-based population response functions that are currently commonly used in forest trees. The third chapter aims to identify the populations whose gene-environment relationships will be the most disrupted under climate change (i.e. populations at risk of short-term climate maladaptation) using the genomic offset approach, and to validate the resulting predictions (i.e. populations with high genomic offset are expected to show a decrease in fitness) both in natural populations and in common garden conditions. Finally, the present PhD work investigates different ways to integrate genomic information into current modeling approaches, therefore contributing to the development of a much-needed robust framework to make reliable predictions and to determine when and to what extent genomics can help in making decisions in conservation strategies or in the management of forest ecosystems
Mountain landscape connectivity and subspecies appurtenance shape genetic differentiation in natural plant populations of the snapdragon ( Antirrhinum majus L.)
International audienc
Potential adaptive divergence between subspecies and populations of snapdragon plants inferred from QSTâFST comparisons
International audiencePhenotypic divergence among natural populations can be explained by natural selection or by neutral processes such as drift. Many examples in the literature compare putatively neutral (FST) and quantitative genetic (QST) differentiation in multiple populations to assess their evolutionary signature and identify candidate traits involved with local adaptation. Investigating these signatures in closely related or recently diversified species has the potential to shed light on the divergence processes acting at the interspecific level. Here, we conducted this comparison in two subspecies of snapdragon plants (eight populations of Antirrhinum majus pseudomajus and five populations of A. m. striatum) in a common garden experiment. We also tested whether altitude was involved with population phenotypic divergence. Our results identified candidate phenological and morphological traits involved with local adaptation. Most of these traits were identified in one subspecies but not the other. Phenotypic divergence increased with altitude for a few biomassârelated traits, but only in A. m. striatum. These traits therefore potentially reflect A. m. striatum adaptation to altitude. Our findings imply that adaptive processes potentially differ at the scale of A. majus subspecies
Genetic variation underlies the plastic response to shade of snapdragon plants ( Antirrhinum majus L.)
International audienceA classic example of phenotypic plasticity in plants is the set of traits that change in response to shade. There is widespread evidence that plants in low light conditions often avoid shade by growing taller or by increasing their photosynthetic efficiency, i.e. the shade avoidance syndrome. Whether this plasticity might evolve in response to natural selection depends upon the presence of its standing genetic variation in wild populations. There is limited evidence for heritable standing variation in the plastic response of plants to shade. In this study, we used an experimental common garden approach to investigate this plastic response in snapdragon plants (Antirrhinum majus L.) originating from four natural populations from the Mediterranean region. Our results showed that individual plants reacted strongly to the presence of shade by growing longer shoots, longer internodes, and increasing their specific leaf area in these four populations. Our results also revealed genetic variation for the plastic response within these populations, as well as little genetic constraints to its evolution. Our findings imply that natural populations of A. majus harbour standing genetic variation for phenotypic plasticity in response to shade, providing them the potential to evolve in response to selection