18 research outputs found

    Ceftazidime-avibactam resistance in Klebsiella pneumoniae sequence type 37: a decade of persistence and concealed evolution

    Get PDF
    The first reports of carbapenem-resistant Enterobacterales in our hospital date back to 2006. In that period, few ertapenem-resistant but meropenem-susceptible Klebsiella pneumoniae isolates belonging to sequence type (ST) 37 were retrieved from clinical samples. These strains produced the CTX-M-15 extended spectrum β-lactamase, OmpK35 was depleted due to a nonsense mutation, and a novel OmpK36 variant was identified. Yet, starting from 2010, Klebsiella pneumoniae carbapenemase (KPC)-producing ST512 isolates started prevailing and ST37 vanished from sight. Since 2018 the clinical use of the combination of ceftazidime-avibactam (CZA) has been introduced in clinical practice for the treatment of bacteria producing serine-β-lactamases, but KPC-producing, CZA-resistant K. pneumoniae are emerging. In 2021, four CZA-resistant ST37 isolates producing KPC variants were isolated from the same number of patients. blaKPC gene cloning in Escherichia coli was used to define the role of those KPC variants on CZA resistance, and whole genome sequencing was performed on these isolates and on three ST37 historical isolates from 2011. CZA resistance was due to mutations in the blaKPC genes carried on related pKpQIL-type plasmids, and three variants of the KPC enzyme have been identified in the four ST37 strains. The four ST37 isolates were closely related to each other and to the historical isolates, suggesting that ST37 survived without notice in our hospital for 10 years, waiting to re-emerge as a CZA-resistant K. pneumoniae clone. The ancestor of these contemporary isolates derives from ST37 wild-type porin strains, with no other mutations in chromosomal genes involved in conferring antibiotic resistance (parC, gyrA, ramR, mgrB, pmrB)

    Genome-based retrospective analysis of a Providencia stuartii outbreak in Rome, Italy. Broad spectrum IncC plasmids spread the NDM carbapenemase within the hospital

    Get PDF
    Providencia stuartii is a member of the Morganellaceae family, notorious for its intrinsic resistance to several antibiotics, including last-resort drugs such as colistin and tigecycline. Between February and March 2022, a four-patient outbreak sustained by P. stuartii occurred in a hospital in Rome. Phenotypic analyses defined these strains as eXtensively Drug-Resistant (XDR). Wholegenome sequencing was performed on the representative P. stuartii strains and resulted in fully closed genomes and plasmids. The genomes were highly related phylogenetically and encoded various virulence factors, including fimbrial clusters. The XDR phenotype was primarily driven by the presence of the (NDM)-N-bla- 1 metallo- beta-lactamase alongside the rmtC 16S rRNA methyltransferase, conferring resistance to most beta-lactams and every aminoglycoside, respectively. These genes were found on an IncC plasmid that was highly related to an NDM-IncC plasmid retrieved from a ST15 Klebsiella pneumoniae strain circulating in the same hospital two years earlier. Given its ability to acquire resistance plasmids and its intrinsic resistance mechanisms, P. stuartii is a formidable pathogen. The emergence of XDR P. stuartii strains poses a significant public health threat. It is essential to monitor the spread of these strains and develop new strategies for their control and treatment

    Multiplicity of blaKPC genes and pKpQIL plasmid plasticity in the development of ceftazidime-avibactam and Meropenem coresistance in Klebsiella pneumoniae sequence type 307

    Get PDF
    In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of bla(KPC-3) and one copy of bla(KPC-31) located on plasmid pKpQIL. The genomes and plasmids of CZA-resistant ST307 strains were analyzed to identify the molecular mechanisms leading to the evolution of resistance and compared with ST307 genomes at local and global levels. A complex pattern of multiple plasmids in rearranged configurations, coresident within the CZA-carbapenem-resistant K. pneumoniae strain, was observed. Characterization of these plasmids revealed recombination and segregation events explaining why K. pneumoniae isolates from the same patient had different antibiotic resistance profiles. This study illustrates the intense genetic plasticity occurring in ST307, one of the most worldwide-diffused K. pneumoniae high-risk clones.In 2021, Klebsiella pneumoniae sequence type 307 (ST307) strains causing pulmonary and bloodstream infections identified in a hospital in Rome, Italy, reached high levels of resistance to ceftazidime-avibactam (CZA). One of these strains reached high levels of resistance to both CZA and carbapenems and carried two copies of bla(KPC-3) and one copy of bla(KPC-31) located on plasmid pKpQIL

    Klebsiella pneumoniae infections in COVID-19 patients: a two-month retrospective analysis in an Italian hospital

    Get PDF
    Italy has experienced one of the harshest and earliest COVID-19 epidemics, with the number of patients infected that followed, from the end of February up to the end of March, an exponential trend [1]. Between the 6 March and the 2 May, 394 patients were confirmed positive for SARS-CoV-2 at the University Hospital of Rome Policlinico Umberto I (PUI) [2]. At the PUI, 5 COVID-19 devoted wards were organized, including two brand new ICUs, counting 32 dedicated to COVID-19 patients: the first was the old general ICU converted into a dedicated COVID-19 ICU, while the second was created in the spaces of four operating rooms (new ICU). In the period of this study, a total of 80 COVID-19-affected patients were hospitalized in the two ICUs at PUI. Among them, 65 patients were screened for carbapenemase producing Enterobacterales (CPE) colonization (Brilliance™ CRE medium plates, Oxoid LTD, Basingstoke, UK): 41 out of 47 SARS-CoV-2 patients hospitalised in the old ICU and 24 out of 33 in the new one. Carbapenemase-producing K. pneumoniae were detected in 14/41 patients (34%) only in the old ICU. No CPE were detected from rectal swabs tested in patients hospitalized in the new ICU. In the same period, 11 CPEs were identified from the 39 rectal swabs out of 48 SARS-CoV-2-negative patients (28%) hospitalized in the non-COVID-ICU of the same hospital. Seven COVID-19 patients developed CPE co-infection (5 bronchoalveolar lavages and 2 blood cultures tested positives for carbapenemase-producing K. pneumoniae), while in the non-COVID-19 ICU 7 bloodstream infections (BSIs) also occurred (Table 1). Symptomatic patients were successfully treated with ceftazidime-avibactam

    Virulence plasmid pINV as a genetic signature for Shigella flexneri phylogeny

    No full text
    Shigella flexneri is a major health burden in low- and middle-income countries, where it is a leading cause of mortality associated with diarrhoea in children, and shows an increasing incidence among travellers and men having sex with men. Like all Shigella spp., S. flexneri has evolved from commensal Escherichia coli following the acquisition of a large plasmid pINV, which contains genes essential for virulence. Current sequence typing schemes of Shigella are based on combinations of chromosomal genetic loci, since pINV-encoded virulence genes are often lost during growth in the laboratory, making these elements inappropriate for sequence typing. By performing comparative analysis of pINVs from S. flexneri strains isolated from different geographical regions and belonging to different serotypes, we found that in contrast to plasmid-encoded virulence genes, plasmid maintenance genes are highly stable pINV-encoded elements. For the first time, to our knowledge, we have developed a S. flexneri plasmid multilocus sequence typing (pMLST) method based on different combinations of alleles of the vapBC and yacAB toxin-antitoxin (TA) systems, and the parAB partitioning system. This enables typing of S. flexneri pINV plasmids into distinct 'virulence sequence types' (vSTs). Furthermore, the phylogenies of vST alleles and bacterial host core genomes suggests an intimate co-evolution of pINV with the chromosome of its bacterial host, consistent with previous findings. This work demonstrates the potential of plasmid maintenance loci as genetic characteristics to study as well as to trace the molecular phylogenesis of S. flexneri pINV and the phylogenetic relationship of this plasmid with its bacterial host

    Muscle stem cell and physical activity: what point is the debate at?

    No full text
    In the last 15 years, it emerged that the practice of regular physical activity reduces the risks of many diseases (cardiovascular diseases, diabetes, etc.) and it is fundamental in weight control and energy consuming to contrast obesity. Different groups proposed many molecular mechanisms as responsible for the positive effects of physical activity in healthy life. However, many points remain to be clarified. In this mini-review we reported the latest observations on the effects of physical exercise on healthy skeletal and cardiac muscle focusing on muscle stem cells. The last ones represent the fundamental elements for muscle regeneration post injury, but also for healthy muscle homeostasis

    Muscle stem cell and physical activity: What point is the debate at?

    No full text
    In the last 15 years, it emerged that the practice of regular physical activity reduces the risks of many diseases (cardiovascular diseases, diabetes, etc.) and it is fundamental in weight control and energy consuming to contrast obesity. Different groups proposed many molecular mechanisms as responsible for the positive effects of physical activity in healthy life. However, many points remain to be clarified. In this mini-review we reported the latest observations on the effects of physical exercise on healthy skeletal and cardiac muscle focusing on muscle stem cells. The last ones represent the fundamental elements for muscle regeneration post injury, but also for healthy muscle homeostasis. Interestingly, in both muscle tissues the morphological consequence of physical activity is a physiological hypertrophy that depends on different phenomena both in differentiated cells and stem cells. The signaling pathways for physical exercise effects present common elements in skeletal and cardiac muscle, like activation of specific transcription factors, proliferative pathways, and cytokines. More recently, post translational (miRNAs) or epigenetic (DNA methylation) modifications have been demonstrated. However, several points remain unresolved thus requiring new research on the effect of exercise on muscle stem cells

    Meropenem-Vaborbactam as salvage therapy for Ceftazidime-Avibactam-, Cefiderocol-Resistant ST-512 Klebsiella pneumoniae-producing KPC-31, a D179Y variant of KPC-3

    No full text
    A 68-year-old man had recurrent bacteremia by Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae resistant to ceftazidime-avibactam and cefiderocol. The sequencing of a target region showed that it harbored a KPC-3 variant enzyme (D179Y; KPC-31), which confers resistance to ceftazidime-avibactam and restores meropenem susceptibility. The patient was successfully treated with meropenem-vaborbactam

    Spread of hypervirulent multidrug-resistant ST147 Klebsiella pneumoniae in patients with severe COVID-19: an observational study from Italy, 2020-21

    No full text
    Objectives: To report an outbreak of hypervirulent Klebsiella pneumoniae (hvKp) in COVID-19 patients. Methods: Prospective, observational study including consecutive COVID-19 patients with hvKp infections admitted to the University Hospital of Pisa (Italy). Clinical data and outcome of patients were collected. All patients were followed-up to 30 days from the diagnosis of infection. Mortality within 30 days of the diagnosis of hvKp infection was reported. The hypermucoviscous phenotype was determined by the 'string test'. Molecular typing was performed on three strains collected during different periods of the outbreak. The strains underwent whole genome sequencing using the Illumina MiSeq instrument. The complete circular assemblies were also obtained for the chromosome and a large plasmid using the Unicycler tool. Results: From November 2020 to March 2021, hvKp has been isolated from 36 COVID-19 patients: 29/36 (80.6%) had infections (15 bloodstream infections, 8 ventilator-associated pneumonias and 6 complicated urinary tract infections), while 7/36 (19.4%) had colonization (3 urine, 2 rectal and 2 skin). The isolates belonged to ST147 and their plasmid carried three replicons of the IncFIB (Mar), IncR and IncHI1B types and several resistance genes, including the rmpADC genes encoding enhancers of capsular synthesis. The hvKp isolates displayed an ESBL phenotype, with resistance to piperacillin/tazobactam and ceftolozane/tazobactam and susceptibility only to meropenem and ceftazidime/avibactam. The majority of patients were treated with meropenem alone or in combination with fosfomycin. Thirty-day mortality was 48.3% (14/29). Conclusions: ST147 ESBL-producing hvKp is associated with high mortality in COVID-19 patients. Strict microbiological surveillance and infection control measures are needed in this population
    corecore