16 research outputs found

    Influence of Upright Versus Supine Position on Resting and Exercise Hemodynamics in Patients Assessed for Pulmonary Hypertension

    Full text link
    Background The aim of the present work was to study the influence of body position on resting and exercise pulmonary hemodynamics in patients assessed for pulmonary hypertension (PH). Methods and Results Data from 483 patients with suspected PH undergoing right heart catheterization for clinical indications (62% women, age 61±15 years, 246 precapillary PH, 48 postcapillary PH, 106 exercise PH, 83 no PH) were analyzed; 213 patients (main cohort, years 2016-2018) were examined at rest in upright (45°) and supine position, such as under upright exercise. Upright exercise hemodynamics were compared with 270 patients (historical cohort) undergoing supine exercise with the same protocol. Upright versus supine resting data revealed a lower mean pulmonary artery pressure 31±14 versus 32±13 mm Hg, pulmonary artery wedge pressure 11±4 versus 12±5 mm Hg, and cardiac index 2.9±0.7 versus 3.1±0.8 L/min per m2, and higher pulmonary vascular resistance 4.1±3.1 versus 3.9±2.8 Wood P<0.001. Exercise data upright versus supine revealed higher work rates (53±26 versus 33±22 watt), and adjusting for differences in work rate and baseline values, higher end-exercise mean pulmonary artery pressure (52±19 versus 45±16 mm Hg, P=0.001), similar pulmonary artery wedge pressure and cardiac index, higher pulmonary vascular resistance (5.4±3.7 versus 4.5±3.4 Wood units, P=0.002), and higher mean pulmonary artery pressure/cardiac output (7.9±4.7 versus 7.1±4.1 Wood units, P=0.001). Conclusions Body position significantly affects resting and exercise pulmonary hemodynamics with a higher pulmonary vascular resistance of about 10% in upright versus supine position at rest and end-exercise, and should be considered and reported when assessing PH. Keywords: body position; exercise; hemodynamic; pulmonary hypertension; right heart catheterization

    The Impact of Breathing Hypoxic Gas and Oxygen on Pulmonary Hemodynamics in Patients With Pulmonary Hypertension

    Full text link
    BackgroundPure oxygen breathing (hyperoxia) may improve hemodynamics in patients with pulmonary hypertension (PH) and allows to calculate right-to-left shunt fraction (Qs/Qt), whereas breathing normobaric hypoxia may accelerate hypoxic pulmonary vasoconstriction (HPV). This study investigates how hyperoxia and hypoxia affect mean pulmonary artery pressure (mPAP) and pulmonary vascular resistance (PVR) in patients with PH and whether Qs/Qt influences the changes of mPAP and PVR.Study Design and MethodsAdults with pulmonary arterial or chronic thromboembolic PH (PAH/CTEPH) underwent repetitive hemodynamic and blood gas measurements during right heart catheterization (RHC) under normoxia [fractions of inspiratory oxygen (FiO2_{2}) 0.21], hypoxia (FiO2_{2} 0.15), and hyperoxia (FiO2_{2} 1.0) for at least 10 min.ResultsWe included 149 patients (79/70 PAH/CTEPH, 59% women, mean ± SD 60 ± 17 years). Multivariable regressions (mean change, CI) showed that hypoxia did not affect mPAP and cardiac index, but increased PVR [0.4 (0.1–0.7) WU, p = 0.021] due to decreased pulmonary artery wedge pressure [−0.54 (−0.92 to −0.162), p = 0.005]. Hyperoxia significantly decreased mPAP [−4.4 (−5.5 to −3.3) mmHg, p &lt; 0.001] and PVR [−0.4 (−0.7 to −0.1) WU, p = 0.006] compared with normoxia. The Qs/Qt (14 ± 6%) was &gt;10 in 75% of subjects but changes of mPAP and PVR under hyperoxia and hypoxia were independent of Qs/Qt.ConclusionAcute exposure to hypoxia did not relevantly alter pulmonary hemodynamics indicating a blunted HPV-response in PH. In contrast, hyperoxia remarkably reduced mPAP and PVR, indicating a preserved vasodilator response to oxygen and possibly supporting the oxygen therapy in patients with PH. A high proportion of patients with PH showed increased Qs/Qt, which, however, was not associated with changes in pulmonary hemodynamics in response to changes in FiO2_{2}

    Hypoxia-altitude simulation test to predict altitude-related adverse health effects in COPD patients

    Get PDF
    Background/aims: Amongst numerous travellers to high altitude (HA) are many with the highly prevalent COPD, who are at particular risk for altitude-related adverse health effects (ARAHE). We then investigated the hypoxia-altitude simulation test (HAST) to predict ARAHE in COPD patients travelling to altitude. Methods: This prospective diagnostic accuracy study included 75 COPD patients: 40 women, age 58±9 years, forced expiratory volume in 1 s (FEV1_{1}) 40–80% pred, oxygen saturation measured by pulse oximetry (SpO2_{pO_{2}}) ≥92% and arterial carbon dioxide tension (PaCO2_{aCO_{2}}) 30 min or 75% for >15 min) or intercurrent illness was observed. Results: ARAHE occurred in 50 (66%) patients and 23 out of 75 (31%) were positive on HAST according toSpO2_{pO_{2}}, and 11 out of 64 (17%) according toPaO2_{aO_{2}}. ForSpO2_{pO_{2}}/PaO2_{aO_{2}}we report a sensitivity of 46/25%, specificity of 84/95%, positive predictive value of 85/92% and negative predictive value of 44/37%. Conclusion: In COPD patients ascending to HA, ARAHE are common. Despite an acceptable positive predictive value of the HAST to predict ARAHE, its clinical use is limited by its insufficient sensitivity and overall accuracy. Counselling COPD patients before altitude travel remains challenging and best focuses on early recognition and treatment of ARAHE with oxygen and descent

    Change in Right-to-Left Shunt Fraction in Patients with Chronic Thromboembolic Pulmonary Hypertension after Pulmonary Endarterectomy

    Get PDF
    Background: Pulmonary endarterectomy (PEA) is the treatment of choice for patients with chronic thromboembolic pulmonary hypertension (CTEPH) with accessible lesions. Breathing pure oxygen (hyperoxia) during right heart catheterization (RHC) allows for the calculation of the right-to-left shunt fraction (Qs/Qt). In the absence of intracardiac shunt, Qs/Qt can be used as a marker of ventilation–perfusion mismatch in patients with CTEPH. This study involved investigating Qs/Qt after PEA and its relation to other disease-specific outcomes. Study design and Methods: This study is a retrospective study that focuses on patients with operable CTEPH who had Qs/Qt assessment during RHC before and 1 year after PEA. Additionally, 6 min walking distance (6MWD), WHO functional class (WHO-FC), and NT-proBNP were assessed to calculate a four-strata risk score. Results: Overall, 16 patients (6 females) with a median age of 66 years (quartiles 55; 74) were included. After PEA, an improvement in mean pulmonary artery pressure (38 [32; 41] to 24 [18; 28] mmHg), pulmonary vascular resistance (5.7 [4.0; 6.8] to 2.5 [1.4; 3.8] WU), oxygen saturation (92 [88; 93]% to 94 [93; 95]%), WHO-FC, and risk score was observed (all p < 0.05). No improvement in median Qs/Qt could be detected (13.7 [10.0; 17.5]% to 13.0 [11.2; 15.6]%, p = 0.679). A total of 7 patients with improved Qs/Qt had a significant reduction in risk score compared to those without improved Qs/Qt. Conclusion: PEA did not alter Qs/Qt assessed after 1 year in operable CTEPH despite an improvement in hemodynamics and risk score, potentially indicating a persistent microvasculopathy. In patients whose shunt fraction improved with PEA, the reduced shunt was associated with an improvement in risk score

    Validation of Noninvasive Assessment of Pulmonary Gas Exchange in Patients with Chronic Obstructive Pulmonary Disease during Initial Exposure to High Altitude

    Get PDF
    Investigation of pulmonary gas exchange efficacy usually requires arterial blood gas analysis (aBGA) to determine arterial partial pressure of oxygen (mPaO2) and compute the Riley alveolar-to-arterial oxygen difference (A-aDO2); that is a demanding and invasive procedure. A noninvasive approach (AGM100), allowing the calculation of PaO2 (cPaO2) derived from pulse oximetry (SpO2), has been developed, but this has not been validated in a large cohort of chronic obstructive pulmonary disease (COPD) patients. Our aim was to conduct a validation study of the AG100 in hypoxemic moderate-to-severe COPD. Concurrent measurements of cPaO2 (AGM100) and mPaO2 (EPOC, portable aBGA device) were performed in 131 moderate-to-severe COPD patients (mean ±SD FEV1: 60 ± 10% of predicted value) and low-altitude residents, becoming hypoxemic (i.e., SpO2 < 94%) during a short stay at 3100 m (Too-Ashu, Kyrgyzstan). Agreements between cPaO2 (AGM100) and mPaO2 (EPOC) and between the O2-deficit (calculated as the difference between end-tidal pressure of O2 and cPaO2 by the AGM100) and Riley A-aDO2 were assessed. Mean bias (±SD) between cPaO2 and mPaO2 was 2.0 ± 4.6 mmHg (95% Confidence Interval (CI): 1.2 to 2.8 mmHg) with 95% limits of agreement (LoA): −7.1 to 11.1 mmHg. In multivariable analysis, larger body mass index (p = 0.046), an increase in SpO2 (p < 0.001), and an increase in PaCO2-PETCO2 difference (p < 0.001) were associated with imprecision (i.e., the discrepancy between cPaO2 and mPaO2). The positive predictive value of cPaO2 to detect severe hypoxemia (i.e., PaO2 ≤ 55 mmHg) was 0.94 (95% CI: 0.87 to 0.98) with a positive likelihood ratio of 3.77 (95% CI: 1.71 to 8.33). The mean bias between O2-deficit and A-aDO2 was 6.2 ± 5.5 mmHg (95% CI: 5.3 to 7.2 mmHg; 95%LoA: −4.5 to 17.0 mmHg). AGM100 provided an accurate estimate of PaO2 in hypoxemic patients with COPD, but the precision for individual values was modest. This device is promising for noninvasive assessment of pulmonary gas exchange efficacy in COPD patients

    ECG changes at rest and during exercise in lowlanders with COPD travelling to 3100 m

    Full text link
    Background: The incidence and magnitude of cardiac ischemia and arrhythmias in patients with chronic obstructive pulmonary disease (COPD) during exposure to hypobaric hypoxia is insufficiently studied. We investigated electrocardiogram (ECG) markers of ischemia at rest and during incremental exercise testing (IET) in COPD-patients travelling to 3100 m. Study design and methods: Lowlanders (residence <800 m) with COPD (forced volume in the first second of expiration (FEV1) 40-80% predicted, oxygen saturation (SpO2) ≥92%, arterial partial pressure of carbon dioxide (PaCO2) <6 kPa at 760 m) aged 18 to 75 years, without history of cardiovascular disease underwent 12‑lead ECG recordings at rest and during cycle IET to exhaustion at 760 m and after acute exposure of 3 h to 3100 m. Mean ST-changes in ECGs averaged over 10s were analyzed for signs of ischemia (≥1 mm horizontal or downsloping ST-segment depression) at rest, peak exercise and 2-min recovery. Results: 80 COPD-patients (51% women, mean ± SD, 56.2 ± 9.6 years, body mass index (BMI) 27.0 ± 4.5 kg/m2, SpO2 94 ± 2%, FEV1 63 ± 10% prEd.) were included. At 3100 m, 2 of 53 (3.8%) patients revealed ≥1 mm horizontal ST-depression during IET vs 0 of 64 at 760 m (p = 0.203). Multivariable mixed regression revealed minor but significant ST-depressions associated with altitude, peak exercise or recovery and rate pressure product (RPP) in multiple leads. Conclusion: In this study, ECG recordings at rest and during IET in COPD-patients do not suggest an increased incidence of signs of ischemia with ascent to 3100 m. Whether statistically significant ST changes below the standard threshold of clinical relevance detected in multiple leads reflect a risk of ischemia during prolonged exposure remains to be elucidated. Keywords: Chronic obstructive pulmonary disease (COPD); Electrocardiogram (ECG); Exercise; High altitude; Hypoxia; Ischemia

    ECG changes at rest and during exercise in lowlanders with COPD travelling to 3100 m

    Get PDF
    BACKGROUND The incidence and magnitude of cardiac ischemia and arrhythmias in patients with chronic obstructive pulmonary disease (COPD) during exposure to hypobaric hypoxia is insufficiently studied. We investigated electrocardiogram (ECG) markers of ischemia at rest and during incremental exercise testing (IET) in COPD-patients travelling to 3100 m. STUDY DESIGN AND METHODS Lowlanders (residence <800 m) with COPD (forced volume in the first second of expiration (FEV1_{1}) 40-80% predicted, oxygen saturation (SpO2_{2}) ≥92%, arterial partial pressure of carbon dioxide (PaCO2_{2}) <6 kPa at 760 m) aged 18 to 75 years, without history of cardiovascular disease underwent 12‑lead ECG recordings at rest and during cycle IET to exhaustion at 760 m and after acute exposure of 3 h to 3100 m. Mean ST-changes in ECGs averaged over 10s were analyzed for signs of ischemia (≥1 mm horizontal or downsloping ST-segment depression) at rest, peak exercise and 2-min recovery. RESULTS 80 COPD-patients (51% women, mean ± SD, 56.2 ± 9.6 years, body mass index (BMI) 27.0 ± 4.5 kg/m2^{2}, SpO2_{2} 94 ± 2%, FEV1_{1} 63 ± 10% prEd.) were included. At 3100 m, 2 of 53 (3.8%) patients revealed ≥1 mm horizontal ST-depression during IET vs 0 of 64 at 760 m (p = 0.203). Multivariable mixed regression revealed minor but significant ST-depressions associated with altitude, peak exercise or recovery and rate pressure product (RPP) in multiple leads. CONCLUSION In this study, ECG recordings at rest and during IET in COPD-patients do not suggest an increased incidence of signs of ischemia with ascent to 3100 m. Whether statistically significant ST changes below the standard threshold of clinical relevance detected in multiple leads reflect a risk of ischemia during prolonged exposure remains to be elucidated

    Extravascular lung water and cardiac function assessed by echocardiography in healthy lowlanders during repeated very high-altitude exposure

    Get PDF
    Background High-altitude pulmonary edema is associated with elevated systolic pulmonary artery pressure (sPAP) and increased extravascular lung water (EVLW). We investigated sPAP and EVLW during repeated exposures to high altitude (HA). Methods Healthy lowlanders underwent two identical 7-day HA-cycles, where subjects slept at 2900 m and spent 4–8 h daily at 5050 m, separated by a weeklong break at low altitude (LA). Echocardiography and EVLW by B-lines were measured at 520 m (baseline, LA1), on day one, two and six at 5050 m (HA1–3) and after descent (LA2). Results We included 21 subjects (median 25 years, body mass index 22 kg/m2, SpO2 98%). SPAP rose from 21 mmHg at LA1 to 38 mmHg at HA1, decreased to 30 mmHg at HA3 (both p < 0.05 vs LA1) and normalized at 20 mmHg at LA2 (p = ns vs LA1). B-lines increased from 0 at LA1 to 6 at HA2 and 7 at HA3 (both p < 0.05 vs LA1) and receded to 1 at LA2 (p = ns vs LA1). Overall, in cycle two, sPAP did not differ (mean difference (95% confidence interval) −0.2(−2.3 to 1.9) mmHg, p = 0.864) but B-lines were more prevalent (+2.3 (1.4–3.1), p < 0.001) compared to cycle 1. Right ventricular systolic function decreased significantly but minimally at 5050 m. Conclusions Exposure to 5050 m induced a rapid increase in sPAP. B-lines rose during prolonged exposures to 5050 m, despite gradual decrease in sPAP, indicating excessive hydrostatic pressure might not be solely responsible for EVLW-development. Repeated HA-exposure had no acclimatization effect on EVLW. This may affect workers needing repetitive ascents to altitude and could indicate greater B-line development upon repeated exposure

    Comparison of Repetitive Cardiac Output Measurements at Rest and End-Exercise by Direct Fick Using Pulse Oximetry vs. Blood Gases in Patients With Pulmonary Hypertension

    No full text
    Background: Exact and simultaneous measurements of mean pulmonary artery pressure (mPAP) and cardiac output (CO) are crucial to calculate pulmonary vascular resistance (PVR), which is essential to define pulmonary hypertension (PH). Simultaneous measurements of mPAP and CO are not feasible using the direct Fick (DF) method, due to the necessity to sample blood from the catheter-tip. We evaluated a modified DF method, which allows simultaneous measurement of mPAP and CO without needing repetitive blood samples. Methods: Twenty-four patients with pulmonary arterial or chronic thromboembolic PH had repetitive measurements of CO at rest and end-exercise during three phases of a crossover trial. CO was assessed by the original DF method using oxygen uptake, measured by a metabolic unit, and arterial and mixed venous oxygen saturations from co-oximetry of respective blood gases served as reference. These CO measurements were then compared with a modified DF method using pulse oximetry at the catheter- and fingertip. Results: The bias among CO measurements by the two DF methods at rest was -0.26 L/min with limits of agreement of ±1.66 L/min. The percentage error was 28.6%. At the end-exercise, the bias between methods was 0.29 L/min with limits of agreement of ±1.54 L/min and percentage error of 16.1%. Conclusion: Direct Fick using a catheter- and fingertip pulse oximetry (DFp) is a practicable and reliable method for assessing CO in patients with PH. This method has the advantage of allowing simultaneous measurement of PAP and CO, and frequent repetitive measurements are needed during exercise. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02755259, identifier: NCT02755259. Keywords: cardiac output; direct Fick; exercise; pulmonary hypertension; pulse oximetry

    Effect of Breathing Oxygen-Enriched Air on Exercise Performance in Patients With Pulmonary Hypertension Due to Heart Failure With Preserved Ejection Fraction: A Randomized, Placebo-Controlled, Crossover Trial

    No full text
    Objective: To evaluate the effects of breathing oxygen-enriched air (oxygen) on exercise performance in patients with pulmonary hypertension due to heart failure with preserved ejection fraction (PH-HFpEF). Methods: Ten patients with PH-HFpEF (five women, age 60 ± 9 y, mPAP 37 ± 14 mmHg, PAWP 18 ± 2 mmHg, PVR 3 ± 3 WU, resting SpO2 98 ± 2%) performed two-cycle incremental exercise tests (IET) and two constant-work-rate exercise test (CWRET) at 75% maximal work-rate (W max), each with ambient air (FiO2 0.21) and oxygen (FiO2 0.5) in a randomized, single-blinded, cross-over design. The main outcomes were the change in W max (IET) and cycling time (CWRET) with oxygen vs. air. Blood gases at rest and end-exercise, dyspnea by Borg CR10 score at end-exercise; continuous SpO2, minute ventilation (V'E), carbon dioxide output (V'CO2), and cerebral and quadricep muscle tissue oxygenation (CTO and QMTO) were measured. Results: With oxygen vs. air, W max (IET) increased from 94 ± 36 to 99 ± 36 W, mean difference (95% CI) 5.4 (0.9-9.8) W, p = 0.025, and cycling time (CWRET) from 532 ± 203 to 680 ± 76 s, +148 (31.8-264) s, p = 0.018. At end-exercise with oxygen, Borg dyspnea score and V'E/V'CO2 were lower, whereas PaO2 and end-tidal PaCO2 were higher. Other parameters were unchanged. Conclusion: Patients with PH-HFpEF not revealing resting hypoxemia significantly improved their exercise performance while breathing oxygen-enriched air along with less subjective dyspnea sensation, a better blood oxygenation, and an enhanced ventilatory efficiency. Future studies should investigate whether prolonged training with supplemental oxygen would increase the training effect and, potentially, daily activity for PH-HFpEF patients. Clinical Trial Registration: [clinicaltrials.gov], identifier [NCT04157660]. Keywords: cardiopulmonary exercise test; exercise; external cycling work; heart failure with preserved ejection fraction; oxygen therapy; pulmonary hypertensio
    corecore