21 research outputs found

    Duration of androgen deprivation therapy with postoperative radiotherapy for prostate cancer: a comparison of long-course versus short-course androgen deprivation therapy in the RADICALS-HD randomised trial

    Get PDF
    Background Previous evidence supports androgen deprivation therapy (ADT) with primary radiotherapy as initial treatment for intermediate-risk and high-risk localised prostate cancer. However, the use and optimal duration of ADT with postoperative radiotherapy after radical prostatectomy remains uncertain. Methods RADICALS-HD was a randomised controlled trial of ADT duration within the RADICALS protocol. Here, we report on the comparison of short-course versus long-course ADT. Key eligibility criteria were indication for radiotherapy after previous radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to add 6 months of ADT (short-course ADT) or 24 months of ADT (long-course ADT) to radiotherapy, using subcutaneous gonadotrophin-releasing hormone analogue (monthly in the short-course ADT group and 3-monthly in the long-course ADT group), daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as metastasis arising from prostate cancer or death from any cause. The comparison had more than 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 75% to 81% (hazard ratio [HR] 0·72). Standard time-to-event analyses were used. Analyses followed intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov , NCT00541047 . Findings Between Jan 30, 2008, and July 7, 2015, 1523 patients (median age 65 years, IQR 60–69) were randomly assigned to receive short-course ADT (n=761) or long-course ADT (n=762) in addition to postoperative radiotherapy at 138 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 8·9 years (7·0–10·0), 313 metastasis-free survival events were reported overall (174 in the short-course ADT group and 139 in the long-course ADT group; HR 0·773 [95% CI 0·612–0·975]; p=0·029). 10-year metastasis-free survival was 71·9% (95% CI 67·6–75·7) in the short-course ADT group and 78·1% (74·2–81·5) in the long-course ADT group. Toxicity of grade 3 or higher was reported for 105 (14%) of 753 participants in the short-course ADT group and 142 (19%) of 757 participants in the long-course ADT group (p=0·025), with no treatment-related deaths. Interpretation Compared with adding 6 months of ADT, adding 24 months of ADT improved metastasis-free survival in people receiving postoperative radiotherapy. For individuals who can accept the additional duration of adverse effects, long-course ADT should be offered with postoperative radiotherapy. Funding Cancer Research UK, UK Research and Innovation (formerly Medical Research Council), and Canadian Cancer Society

    Adding 6 months of androgen deprivation therapy to postoperative radiotherapy for prostate cancer: a comparison of short-course versus no androgen deprivation therapy in the RADICALS-HD randomised controlled trial

    Get PDF
    Background Previous evidence indicates that adjuvant, short-course androgen deprivation therapy (ADT) improves metastasis-free survival when given with primary radiotherapy for intermediate-risk and high-risk localised prostate cancer. However, the value of ADT with postoperative radiotherapy after radical prostatectomy is unclear. Methods RADICALS-HD was an international randomised controlled trial to test the efficacy of ADT used in combination with postoperative radiotherapy for prostate cancer. Key eligibility criteria were indication for radiotherapy after radical prostatectomy for prostate cancer, prostate-specific antigen less than 5 ng/mL, absence of metastatic disease, and written consent. Participants were randomly assigned (1:1) to radiotherapy alone (no ADT) or radiotherapy with 6 months of ADT (short-course ADT), using monthly subcutaneous gonadotropin-releasing hormone analogue injections, daily oral bicalutamide monotherapy 150 mg, or monthly subcutaneous degarelix. Randomisation was done centrally through minimisation with a random element, stratified by Gleason score, positive margins, radiotherapy timing, planned radiotherapy schedule, and planned type of ADT, in a computerised system. The allocated treatment was not masked. The primary outcome measure was metastasis-free survival, defined as distant metastasis arising from prostate cancer or death from any cause. Standard survival analysis methods were used, accounting for randomisation stratification factors. The trial had 80% power with two-sided α of 5% to detect an absolute increase in 10-year metastasis-free survival from 80% to 86% (hazard ratio [HR] 0·67). Analyses followed the intention-to-treat principle. The trial is registered with the ISRCTN registry, ISRCTN40814031, and ClinicalTrials.gov, NCT00541047. Findings Between Nov 22, 2007, and June 29, 2015, 1480 patients (median age 66 years [IQR 61–69]) were randomly assigned to receive no ADT (n=737) or short-course ADT (n=743) in addition to postoperative radiotherapy at 121 centres in Canada, Denmark, Ireland, and the UK. With a median follow-up of 9·0 years (IQR 7·1–10·1), metastasis-free survival events were reported for 268 participants (142 in the no ADT group and 126 in the short-course ADT group; HR 0·886 [95% CI 0·688–1·140], p=0·35). 10-year metastasis-free survival was 79·2% (95% CI 75·4–82·5) in the no ADT group and 80·4% (76·6–83·6) in the short-course ADT group. Toxicity of grade 3 or higher was reported for 121 (17%) of 737 participants in the no ADT group and 100 (14%) of 743 in the short-course ADT group (p=0·15), with no treatment-related deaths. Interpretation Metastatic disease is uncommon following postoperative bed radiotherapy after radical prostatectomy. Adding 6 months of ADT to this radiotherapy did not improve metastasis-free survival compared with no ADT. These findings do not support the use of short-course ADT with postoperative radiotherapy in this patient population

    Arsenic mobility and potential co-leaching of fluoride from the sediments of three tributaries of the upper Brahmaputra floodplain, Lakhimpur, Assam, India

    No full text
    A sequential extraction procedure (SEP), batch desorption experiments and the concept of partition coefficient were applied on seven sediment samples from the Subansiri-Dikrong-Ranganadi River System (SDRS), a subset of the upper Brahmaputra floodplain (BFP), to understand leaching of arsenic (As) and fluoride (F−). Sediment samples were collected during monsoon and post-monsoon seasons from each of three river banks to distinguish the effect of annual cyclic flooding events on As content and mobilization. SEP revealed that the readily leachable chemisorbed As phase and amorphous Fe (hydr)oxides were the principal contributors to mobilized As during the monsoon season. Constant flushing of the rivers removed most of the physisorbed and chemisorbed As during the monsoon. A submerged anoxic condition toward late monsoon resulted in Fe (hydr)oxides becoming the dominant source of removable As during the post-monsoon season. Iron in the sediments was positively correlated with F− during both monsoon and post-monsoon seasons. This suggests that Fe (hydr)oxides are a host for F− and a correlation between reductive hydrolysis and F−. Removal of Fe (hydr)oxides from the sediments significantly reduced As retention/leaching capacity. Arsenic desorption was especially high from raw sediments of the Ranganadi River owing to the fact that it had the highest amount of As associated with Fe (hydr)oxides, which falls sharply in the post-monsoon season due to a prolonged submerged state leading to reductive dissolution. However, as leached F− is being constantly flushed out by the SDRS, F− contamination may not pose a problem in the current or futuristic scenarios.by Arbind Kumar Patel, Nilotpal Das, Ritusmita Goswami and Manish Kuma

    Water utilization in urban households: economic constraint, and environmental concern in Guwahati, Assam

    No full text
    by Manish Kumar, Omi Kumari, Arbind K. Patel and Pinky Tanej

    COMPARATIVE UNDERSTANDING OF ARSENIC ENRICHMENT AND MOBILIZATION IN THE AQUIFERS OF THE RIVER GANGES AND BRAHMAPUTRA: A PROVENANCE, PREVALENCE AND HEALTH PERSPECTIVE

    No full text
    by Manish Kumar, Arbind Kumar Patel, Aparna Das, Nilotpal Das and Ritusmita Goswam

    Mitochondrial-mediated apoptosis as a therapeutic target for FNC (2′-deoxy-2′-b-fluoro-4′-azidocytidine)-induced inhibition of Dalton’s lymphoma growth and proliferation

    No full text
    Abstract Purpose T-cell lymphomas, refer to a diverse set of lymphomas that originate from T-cells, a type of white blood cell, with limited treatment options. This investigation aimed to assess the efficacy and mechanism of a novel fluorinated nucleoside analogue (FNA), 2′-deoxy-2′-β-fluoro-4′-azidocytidine (FNC), against T-cell lymphoma using Dalton’s lymphoma (DL)-bearing mice as a model. Methods Balb/c mice transplanted with the DL tumor model received FNC treatment to study therapeutic efficacy against T-cell lymphoma. Behavioral monitoring, physiological measurements, and various analyses were conducted to evaluate treatment effects for mechanistic investigations. Results The results of study indicated that FNC prevented DL-altered behavior parameters, weight gain and alteration in organ structure, hematological parameters, and liver enzyme levels. Moreover, FNC treatment restored organ structures, attenuated angiogenesis, reduced DL cell viability and proliferation through apoptosis. The mechanism investigation revealed FNC diminished MMP levels, induced apoptosis through ROS induction, and activated mitochondrial-mediated pathways leading to increase in mean survival time of DL mice. These findings suggest that FNC has potential therapeutic effects in mitigating DL-induced adverse effects. Conclusion FNC represents an efficient and targeted treatment strategy against T-cell lymphoma. FNC’s proficient ability to induce apoptosis through ROS generation and MMP reduction makes it a promising candidate for developing newer and more effective anticancer therapies. Continued research could unveil FNC’s potential role in designing a better therapeutic approach against NHL
    corecore