14 research outputs found
Scattering by impurity-induced order parameter ``holes'' in d-wave superconductors
Nonmagnetic impurities in d-wave superconductors cause strong local
suppressions of the order parameter. We investigate the observable effects of
the scatterigng off such suppressions in bulk samples by treating the order
parameter "hole" as a pointlike off-diagonal scatterer treated within a
self-consistent t-matrix approximation. Strong scattering potentials lead to a
finite-energy spectral feature in the d-wave "impurity band", the observable
effects of which include enhanced low-temperature microwave power absorption
and a stronger sensitivity of the London penetration depth to disorder than
found previously in simpler ``dirty'' d-wave models.Comment: 5 pp. Revtex including 4 postscript figures, submitted to Phys. Rev.
Kinetic Inductance and Penetration Depth of Thin Superconducting Films Measured by THz Pulse Spectroscopy
We measure the transmission of THz pulses through thin films of YBCO at
temperatures between 10K and 300K. The pulses possess a useable bandwidth
extending from 0.1 -- 1.5 THz (3.3 cm^-1 -- 50 cm^-1). Below T_c we observe
pulse reshaping caused by the kinetic inductance of the superconducting charge
carriers. From transmission data, we extract values of the London penetration
depth as a function of temperature, and find that it agrees well with a
functional form (\lambda(0)/\lambda(T))^2 = 1 - (T/T_c)^{\alpha}, where
\lambda(0) = 148 nm, and \alpha = 2. *****Figures available upon request*****Comment: 7 Pages, LaTe
Critical temperature and superfluid density suppression in disordered high- cuprate superconductors
We argue that the standard Abrikosov-Gorkov (AG) type theory of in
disordered -wave superconductors breaks down in short coherence length
high- cuprates. Numerical calculations within the Bogoliubov-de Gennes
formalism demonstrate that the correct description of such systems must allow
for the spatial variation of the order parameter, which is strongly suppressed
in the vicinity of impurities but mostly unaffected elsewhere. Suppression of
as measured with respect to the attendant decrease in the superfluid
density is found to be significantly weaker than that predicted by the AG
theory, in good agreement with experiment.Comment: REVTeX, 4 pages, 3 ps figures included [The version to appear in PRB
Sept. 1. Conclusions of the paper unchanged; several changes in text and
figures for added clarity, discussion of phase fluctuations added.
Distinguishing d-wave from highly anisotropic s-wave superconductors
Systematic impurity doping in the Cu-O plane of the hole-doped cuprate
superconductors may allow one to decide between unconvention al ("d-wave") and
anisotropic conventional ("s-wave") states as possible candidates for the order
parameter in these materials. We show that potential scattering of any strength
always increases the gap minima of such s-wave states, leading to activated
behavior in temperature with characteristic impurity concentration dependence
in observable quantities such as the penetration depth. A magnetic component to
the scattering may destroy the energy gap and give rise to conventional gapless
behavior, or lead to a nonmonotonic dependence of the gap on impurity
concentration. We discuss how experiments constrain this analysis.Comment: 5 page
Density of states of a layered S/N d-wave superconductor
We calculate the density of states of a layered superconductor in which there
are two layers per unit cell. One of the layers contains a d-wave pairing
interaction while the other is a normal metal. The goal of this article is to
understand how the d-wave behaviour of the system is modified by the coupling
between the layer-types. This coupling takes the form of coherent, single
particle tunneling along the c-axis. We find that there are two physically
different limits of behaviour, which depend on the relative locations of the
Fermi surfaces of the two layer-types. We also discuss the interference between
the interlayer coupling and pairing interaction and we find that this
interference leads to features in the density of states.Comment: 33 pages and 11 PostScript figure
d-Wave Model for Microwave Response of High-Tc Superconductors
We develop a simple theory of the electromagnetic response of a d- wave
superconductor in the presence of potential scatterers of arbitrary s-wave
scattering strength and inelastic scattering by antiferromagnetic spin
fluctuations. In the clean London limit, the conductivity of such a system may
be expressed in "Drude" form, in terms of a frequency-averaged relaxation time.
We compare predictions of the theory with recent data on YBCO and BSSCO
crystals and on YBCO films. While fits to penetration depth measurements are
promising, the low temperature behavior of the measured microwave conductivity
appears to be in disagreement with our results. We discuss implications for
d-wave pairing scenarios in the cuprate superconductors.Comment: 33 pages, plain TeX including all macros. 16 uuencoded, compressed
postscript figures are appended at the en
Infrared conductivity of a d_{x^2-y^2}-wave superconductor with impurity and spin-fluctuation scattering
Calculations are presented of the in-plane far-infrared conductivity of a
d_{x^2-y^2}-wave superconductor, incorporating elastic scattering due to
impurities and inelastic scattering due to spin fluctuations. The impurity
scattering is modeled by short-range potential scattering with arbitrary phase
shift, while scattering due to spin fluctuations is calculated within a
weak-coupling Hubbard model picture. The conductivity is characterized by a
low-temperature residual Drude feature whose height and weight are controlled
by impurity scattering, as well as a broad peak centered at 4 Delta_0 arising
from clean-limit inelastic processes. Results are in qualitative agreement with
experiment despite missing spectral weight at high energies.Comment: 29 pages (11 tar-compressed-uuencoded Postscript figures), REVTeX 3.0
with epsf macro