4 research outputs found
From meadows to milk to mucosa – adaptation of Streptococcus and Lactococcus species to their nutritional environments
Lactic acid bacteria (LAB) are indigenous to food-related habitats as well as associated with the mucosal surfaces of animals. The LAB family Streptococcaceae consists of the genera Lactococcus and Streptococcus. Members of the family include the industrially important species Lactococcus lactis, which has a long history safe use in the fermentative food industry, and the disease-causing streptococci Streptococcus pneumoniae and Streptococcus pyogenes. The central metabolic pathways of the Streptococcaceae family have been extensively studied because of their relevance in the industrial use of some species, as well as their influence on virulence of others. Recent developments in high-throughput proteomic and DNA-microarray techniques, in in vivo NMR studies, and importantly in whole-genome sequencing have resulted in new insights into the metabolism of the Streptococcaceae family. The development of cost-effective high-throughput sequencing has resulted in the publication of numerous whole-genome sequences of lactococcal and streptococcal species. Comparative genomic analysis of these closely related but environmentally diverse species provides insight into the evolution of this family of LAB and shows that the relatively small genomes of members of the Streptococcaceae family have been largely shaped by the nutritionally rich environments they inhabit.
High-Resolution Chrono-Transcriptome of Lactococcus lactis Reveals That It Expresses Proteins with Adapted Size and pI upon Acidification and Nutrient Starvation
Whole-genome transcriptional analyses performed on microorganisms are traditionally based on a small number of samples. To map transient expression variations, and thoroughly characterize gene expression throughout the growth curve of the widely used model organism Lactococcus lactis MG1363, gene expression data were collected with unprecedented time resolution. The resulting gene expression patterns were globally analyzed in several different ways to demonstrate the richness of the data and the ease with which novel phenomena can be discovered. When the culture moves from one growth phase to another, gene expression patterns change to such an extent that we suggest that those patterns can be used to unequivocally distinguish growth phases from each other. Also, within the classically defined growth phases, subgrowth phases were distinguishable with a distinct expression signature. Apart from the global expression pattern shifts seen throughout the growth curve, several cases of short-lived transient gene expression patterns were clearly observed. These could help explain the gene expression variations frequently observed in biological replicates. A method was devised to estimate a measure of unnormalized/absolute gene expression levels and used to determine how global transcription patterns are influenced by nutrient starvation or acidification of the medium. Notably, we inferred that L. lactis MG1363 produces proteins with on average lower pIs and lower molecular weights as the medium acidifies and nutrients get scarcer. IMPORTANCE This data set is a rich resource for microbiologists interested in common mechanisms of gene expression, regulation and in particular the physiology of L. lactis. Thus, similar to the common use of genome sequence data by the scientific community, the data set constitutes an extensive data repository for mining and an opportunity for bioinformaticians to develop novel tools for in-depth analysis
Aspartokinaz denetimi ortadan kaldırılmış Streptomyces clavuligerus mutantlarında Sefamisin C üretiminin araştırılması.
Aspartokinase is the first enzyme of the aspartate family amino acids biosynthetic pathway. Cephamycin C is a β-lactam antibiotic produced as a secondary metabolite via the enzymatic reactions in the lysine branch of this pathway in Streptomyces clavuligerus. The aspartokinase activity of S. clavuligerus is under concerted feedback inhibition by two of the end product amino acids, lysine plus threonine. It is also known that carbon flow through the lysine branch of the aspartate pathway is rate limiting step in the formation of cephamycin C. Therefore, genetic alterations in the regulatory regions of the aspartokinase enzyme are expected to lead to an increased cephamycin C production. The aim of this study was to obtain S. clavuligerus mutants that possess aspartokinase enzyme insensitive to feedback inhibition by lysine and threonine, identification of the mutation(s) accounting for the resistance being the ultimate goal. For this aim, chemical mutagenesis was employed to increase random mutation rate and a population of lysine anti-metabolite resistant S. clavuligerus mutants that can grow in the presence of S-(2-aminoethyl)-L-cysteine was obtained. The mutants were screened for their aspartokinase insensitivity via enzyme assays and one mutant exhibiting the highest level of deregulation was assessed for its cephamycin C production. The results revealed a 2-fold increase in specific production of the antibiotic. As a member of β-lactam class antibiotics, cephamycin C has an importance in medicine. Therefore, the mutant strain obtained might be a candidate for industrial production of the compound.M.S. - Master of Scienc
pSEUDO, a Genetic Integration Standard for Lactococcus lactis ▿
Plasmid pSEUDO and derivatives were used to show that llmg_pseudo_10 in Lactococcus lactis MG1363 and its homologous locus in L. lactis IL1403 are suitable for chromosomal integrations. L. lactis MG1363 and IL1403 nisin-induced controlled expression (NICE) system derivatives (JP9000 and IL9000) and two general stress reporter strains (NZ9000::PhrcA-GFP and NZ9000::PgroES-GFP) enabling in vivo noninvasive monitoring of cellular fitness were constructed