20 research outputs found

    The Ubiquitin Proteasome System Acutely Regulates Presynaptic Protein Turnover and Synaptic Efficacy

    Get PDF
    AbstractBackground: The ubiquitin proteasome system (UPS) mediates regulated protein degradation and provides a mechanism for closely controling protein abundance in spatially restricted domains within cells. We hypothesized that the UPS may acutely determine the local concentration of key regulatory proteins at neuronal synapses as a means for locally modulating synaptic efficacy and the strength of neurotransmission communication.Results: We investigated this hypothesis at the Drosophila neuromuscular synapse by using an array of genetic and pharmacological tools. This study demonstrates that UPS components are present in presynaptic boutons and that the UPS functions locally in the presynaptic compartment to rapidly eliminate a conditional transgenic reporter of proteasome activity. We assayed a panel of synaptic proteins to determine whether the UPS acutely regulates the local abundance of native synaptic targets. Both acute pharmacological inhibition of the proteasome (<1 hr) and targeted genetic perturbation of proteasome function in the presynaptic neuron cause the specific accumulation of the essential synaptic vesicle-priming protein DUNC-13. Most importantly, acute pharmacological inhibition of the proteasome (<1 hr) causes a rapid strengthening of neurotransmission (an approximately 50% increase in evoked amplitude) because of increased presynaptic efficacy. The proteasome-dependent regulation of presynaptic protein abundance, both of the exogenous reporter and native DUNC-13, and the modulation of presynaptic neurotransmitter release occur on an intermediate, rapid (tens of minutes) timescale.Conclusions: Taken together, these studies demonstrate that the UPS functions locally within synaptic boutons to acutely control levels of presynaptic protein and that the rate of UPS-dependent protein degradation is a primary determinant of neurotransmission strength

    Calcium-sensing receptor antagonists abrogate airway hyperresponsiveness and inflammation in allergic asthma

    Get PDF
    Airway hyperresponsiveness and inflammation are fundamental hallmarks of allergic asthma that are accompanied by increases in certain polycations, such as eosinophil cationic protein. Levels of these cations in body fluids correlate with asthma severity. We show that polycations and elevated extracellular calcium activate the human recombinant and native calcium-sensing receptor (CaSR), leading to intracellular calcium mobilization, cyclic adenosine monophosphate breakdown, and p38 mitogen-activated protein kinase phosphorylation in airway smooth muscle (ASM) cells. These effects can be prevented by CaSR antagonists, termed calcilytics. Moreover, asthmatic patients and allergen-sensitized mice expressed more CaSR in ASMs than did their healthy counterparts. Indeed, polycations induced hyperreactivity in mouse bronchi, and this effect was prevented by calcilytics and absent in mice with CaSR ablation from ASM. Calcilytics also reduced airway hyperresponsiveness and inflammation in allergen-sensitized mice in vivo. These data show that a functional CaSR is up-regulated in asthmatic ASM and targeted by locally produced polycations to induce hyperresponsiveness and inflammation. Thus, calcilytics may represent effective asthma therapeutics

    Brain-derived neurotrophic factor enhances calcium regulatory mechanisms in human airway smooth muscle.

    Get PDF
    Neurotrophins (NTs), which play an integral role in neuronal development and function, have been found in non-neuronal tissue (including lung), but their role is still under investigation. Recent reports show that NTs such as brain-derived neurotrophic factor (BDNF) as well as NT receptors are expressed in human airway smooth muscle (ASM). However, their function is still under investigation. We hypothesized that NTs regulate ASM intracellular Ca(2+) ([Ca(2+)](i)) by altered expression of Ca(2+) regulatory proteins. Human ASM cells isolated from lung samples incidental to patient surgery were incubated for 24 h (overnight) in medium (control) or 1 nM BDNF in the presence vs. absence of inhibitors of signaling cascades (MAP kinases; PI3/Akt; NFΞΊB). Measurement of [Ca(2+)](i) responses to acetylcholine (ACh) and histamine using the Ca(2+) indicator fluo-4 showed significantly greater responses following BDNF exposure: effects that were blunted by pathway inhibitors. Western analysis of whole cell lysates showed significantly higher expression of CD38, Orai1, STIM1, IP(3) and RyR receptors, and SERCA following BDNF exposure, effects inhibited by inhibitors of the above cascades. The functional significance of BDNF effects were verified by siRNA or pharmacological inhibition of proteins that were altered by this NT. Overall, these data demonstrate that NTs activate signaling pathways in human ASM that lead to enhanced [Ca(2+)](i) responses via increased regulatory protein expression, thus enhancing airway contractility
    corecore