2 research outputs found

    Low-lying s=+1s=+1 Pentaquark states in the Inherent Nodal Structure Analysis

    Full text link
    The strangeness s=+1s=+1 pentaquark states as qqqqqˉqqqq\bar{q} clusters are investigated in this letter. Starting from the inherent geometric symmetry, we analyzed the inherent nodal structure of the system. As the nodeless states, the low-lying states are picked out. Then the S-wave state (JP,T)=(1/2−,0)(J^P, T)= ({{1/2}}^{-}, 0) and P-wave state (JP,T)=(1/2+,0)(J^P, T)= ({{1/2}}^{+}, 0) may be the candidates of low-lying pentaquark states. By comparing the accessibility of the two states and referring the presently obtained K-N interaction potential, we propose that the quantum numbers of the observed pentaquark state Θ+\Theta^{+} may be (JP,T)=(1/2+,0)(J^P, T)=({{1/2}}^{+}, 0) and L=1.Comment: 15 pages, 2 figures, 4 tables. Revised version with detailed description, expanded discussion and reference for the geometric configuration to be proposed being adde

    Heavy and Light Pentaquark Chiral Lagrangian

    Full text link
    Using the SU(3) flavor symmetry, we construct the chiral Lagrangians for the light and heavy pentaquarks. The correction from the nonzero quark is taken into account perturbatively. We derive the Gell-Mann−-Okubo type relations for various pentaquark multiplet masses and Coleman-Glashow relations for anti-sextet heavy pentaquark magnetic moments. We study possible decays of pentaquarks into conventional hadrons. We also study the interactions between and within various pentaquark multiplets and derive their coupling constants in the symmetry limit. Possible kinematically allowed pionic decay modes are pointed out
    corecore