16 research outputs found

    Update on Epidemiology and Circulating Genotypes of Rotavirus in Iranian Children With Severe Diarrhea: 1986-2015

    Get PDF
    Rotaviruses are the most common cause of severe diarrhea in children under 5 years of age worldwide with a higher prevalence in developing countries. In accordance with the World Health Organization (WHO) recommendations for the global use of rotavirus vaccines, it is important to review trends of rotavirus epidemiology, distribution and diversity of rotavirus strains in the pre-vaccine period. In Iran, the average rotavirus positivity rate is 40.04% in all patients under 5 years of age hospitalized for acute gastroenteritis (AGE). Studies have shown a substantial increase in the rotavirus detection rate over time from 1986 to 2013. Moreover, there has been continued predominance of G (G1) and P (P[8]) genotypes, although the peak prevalence of G1 appeared to decline in 2007-2011 compared to 2001-2006. The data presented in this review, which suggests a change in the pattern of rotavirus genotypes in the Iranian population, further highlights the important role of continuous monitoring of rotavirus genotypes before starting any national rotavirus vaccination program

    Fiber manipulation and post-assembly nanobody conjugation for adenoviral vector retargeting through SpyTag-SpyCatcher protein ligation

    Get PDF
    For adenoviruses (Ads) to be optimally effective in cancer theranostics, they need to be retargeted toward target cells and lose their natural tropism. Typically, this is accomplished by either engineering fiber proteins and/or employing bispecific adapters, capable of bonding Ad fibers and tumor antigen receptors. This study aimed to present a simple and versatile method for generating Ad-based bionanoparticles specific to target cells, using the SpyTag-SpyCatcher system. The SpyTag peptide was inserted into the HI loop of fiber-knob protein, which could act as a covalent anchoring site for a targeting moiety fused to a truncated SpyCatcher (SpyCatcherΔ) pair. After confirming the presence and functionality of SpyTag on the Ad type-5 (Ad5) fiber knob, an adapter molecule, comprising of SpyCatcherΔ fused to an anti-vascular endothelial growth factor receptor 2 (VEGFR2) nanobody, was recombinantly expressed in Escherichia coli and purified before conjugation to fiber-modified Ad5 (fmAd5). After evaluating fmAd5 detargeting from its primary coxsackie and adenovirus receptor (CAR), the nanobody-decorated fmAd5 could be efficiently retargeted to VEGFR2-expressing 293/KDR and human umbilical vein endothelial (HUVEC) cell lines. In conclusion, a plug-and-play platform was described in this study for detargeting and retargeting Ad5 through the SpyTag-SpyCatcher system, which could be potentially applied to generate tailored bionanoparticles for a broad range of specific targets; therefore, it can be introduced as a promising approach in cancer nanotheranostics

    Designing, Constructing and Immunogenic Evaluation of Polytope DNA Constructs by the Application of Hepatitis C Virus Immunodominant Epitopes in BALB/c Mouse

    No full text
    Objective: Polytope DNA vaccines, capable of focusing the cytotoxic T lymphocyte (CTL)response on critical epitopes, represent a promising approach in HCV immunotherapy. Nevertheless,due to controversial rules governing epitope processing and the low level expression/immunogenicity of recombinant polytope peptides, designing and primary expression/immunogenicity analysis of these vaccine types should be the first consideration prior tocostly transgenic animal studies.Materials and Methods: Four HLA-A2 and H-2d restricted CTL epitopes were selected anddesigned in three appropriate sequential tandems based on epitope and proteasomal cleavagepredictions. The related nucleotide sequences were synthesized using SOEing PCRmethod and cloned into a pcDNA3.1 vector, either alone or fused to the small hepatitis B surfaceantigen (HBsAg-S) gene. Following the preparation of polyclonal anti-sera, expression/secretion of polytopes was evaluated in Cos-7 cells by using immunofluorescence, Westernblot,dot blot, ELISA and RT-PCR techniques. The immunogenicity of the plasmids was alsoassessed through the delayed-type hypersensitivity (DTH) assay in BALB/c mice.Results: Due to in silico designs and optimizations, the polytope products of constructedplasmids were efficiently detected in vitro through common techniques and HBsAg-S-basedparticles were shown to be secreted into the culture media (up to 30%). Moreover, all plasmidswere able to efficiently induce a positive DTH response while HBsAg-S fusion constructsindicated a significant immunopotential effect towards the incorporated mouse epitopes.Conclusion: Designed polytope constructs of this study are efficiently expressed and processed.They have the required initial potency for further immunogenicity analysis in transgenicmice

    The β‐domain of streptokinase affects several functionalities, including specific/proteolytic activity kinetics

    No full text
    Streptokinase (SK) is a plasminogen activator which converts inactive plasminogen (Pg) to active plasmin (Pm), which cleaves fibrin clots. SK secreted by groups A, C, and G Streptococcus (SKA/SKC/SKG) is composed of three domains: SKα, SKβ and SKγ. Previous domain‐swapping studies between SK1/SK2b‐cluster variants revealed that SKβ plays a major role in the activation of human Pg. Here, we carried out domain‐swapping between skcg‐SK/SK2‐cluster variants to determine the involvement of SKβ in several SK functionalities, including specific/proteolytic activity kinetics, fibrinogen‐bound Pg activation and α2‐antiplasmin resistance. Our results indicate that SKβ has a minor to determining role in these diverse functionalities for skcg‐SK and SK2b variants, which might potentially be accompanied by few critical residues acting as hot spots. Our findings enhance our understanding of the roles of SKβ and hot spots in different functional characteristics of SK clusters and may aid in the engineering of fibrin‐specific variants of SK for breaking down blood clots with potentially higher efficacy and safety

    Expression analysis data of BCL11A and Îł-globin genes in KU812 and KG-1 cell lines after CRISPR/Cas9-mediated BCL11A enhancer deletion

    Full text link
    The data presented in this article are related to the research article entitled as "Targeted deletion of the BCL11A gene by CRISPR-Cas9 system for fetal hemoglobin reactivation: A promising approach for gene therapy of beta-thalassemia disease " [1]. BCL11A is a master regulator of γ-globin gene silencing, and suppresses fetal hemoglobin expression by association with other γ-globin suppressors, and also interacts with human beta-globin locus control region as well as intergenic region between the Aγ and δ-globin genes to reconfigure beta-globin cluster. Thus, HbF reactivation has been proposed to be an approach for the treatment of β-thalassemia through knockout of BCL11A. Accordingly, an erythroid enhancer sequence was identified that, when inactivated, led to repression of BCL11A and induction of γ-globin in the erythroid lineage [2-7]. This article describes data that obtained from BCL11A gene enhancer modification in KU812 and KG-1 cell lines using the CRISPR-Cas9 genome editing system in order to reactivate γ-globin gene expression

    Adenovirus vector-based vaccines as forefront approaches in fighting the battle against flaviviruses

    No full text
    Flaviviruses are arthropod-borne viruses (arboviruses) that have been recently considered among the significant public health problems in defined geographical regions. In this line, there have been vaccines approved for some flaviviruses including dengue virus (DENV), Japanese encephalitis virus (JEV), yellow fever virus (YFV), and tick-borne encephalitis virus (TBEV), although the efficiency of such vaccines thought to be questionable. Surprisingly, there are no effective vaccine for many other hazardous flaviviruses, including West Nile and Zika viruses. Furthermore, in spite of approved vaccines for some flaviviruses, for example DENV, alternative prophylactic vaccines seem to be still needed for the protection of a broader population, and it originates from the unsatisfying safety, and the efficacy of vaccines that have been introduced. Thus, adenovirus vector-based vaccine candidates are suggested to be effective, safe, and reliable. Interestingly, recent widespread use of adenovirus vector-based vaccines for the COVID-19 pandemic have highlighted the importance and feasibility of their widespread application. In this review, the applicability of adenovirus vector-based vaccines, as promising approaches to harness the diseases caused by Flaviviruses, is discussed

    A Dual-Type L2 11-88 Peptide from HPV Types 16/18 Formulated in Montanide ISA 720 Induced Strong and Balanced Th1/Th2 Immune Responses, Associated with High Titers of Broad Spectrum Cross-Reactive Antibodies in Vaccinated Mice

    No full text
    E. coli-derived concatenated, multitype L2-conserved epitopes of human papillomavirus (HPV) L2 protein might represent a less expensive and pan-type vaccine alternative (compared to type-specific HPV L1 virus-like particles), if stable protein expression and strong immunogenicity features could be met. Herein, three dual-type- (DT-) HPV L2 fusion peptides comprising the three head-to-tail tandem repeats (multimers) of either HPV 16 epitope “17-36” or “69-81” or one copy (monomer) of 11-88 fused to the same residues of HPV 18 were constructed and expressed in E. coli. SDS-PAGE and Western blot analyses indicated the proper expression and stability of the E. coli-derived DT peptides. Mice immunized by formulation of the purified DT peptides and Freund’s adjuvant (CFA/IFA) raised neutralizing antibodies (NAbs; the highest for DT: 11-88 peptide) which showed proper cross-reactivity to HPV types: 18, 16, 31, and 45 and efficiently neutralized HPV 18/16 pseudoviruses in vitro. Immunization studies in mice by formulation of the DT: 11-88 × 1 peptide with various adjuvants (alum, MF59, and Montanides ISA 720 and 50) indicated that Montanide adjuvants elicited the highest cross-reactive titers of NAbs and similar levels of IgG1 and IgG2a (switching towards balanced Th1/Th2 responses). The results implied development of low-cost E. coli-derived DT: 11-88 peptide formulated in human compatible ISA 720 adjuvant as a HPV vaccine

    Optimization the expression of human papilloma virus E6 and E7 polytopic construct in E. coli expression system

    No full text
    Background: Human papilloma virus is a DNA virus from the papillomavirus family that is most prevalent in human cervical cancers and many studies showed the E6 and E7 proteins are present in the majority of cervical cancer cases. Development of universal HPV peptide-based vaccine with more serotypes coverage has considerable value. The aim of the study was to design a multi-epitope universal vaccine for major HPV based on E6 and E7 proteins and optimization the expression of polytopic construct contains E6 and E7 genes from different genotypes of human papilloma virus as a candid vaccine. Methods: In this experimental study that was carried out in Pasteur Institute of Iran, Virology Department from October 2013 to November 2014. In order to design the polytypic construct, we predicted the most probable immunogenic epitopes of E6 and E7 from common high risk HPV16, 18, 31, 45 along with high prevalent type 6 and 11 using bioinformatics methods. The synthetic pET28a expression vector harboring E6 and E7 protein was transformed into Escherichia coli hosts and its expression was analyzed by SDS-PAGE and western blotting. Finally, in order to expression optimization of recombinant protein, cell density, induction time, growth temperature, IPTG (Isopropyl β-D-1-thiogalactopyranoside) concentration and cultures media were studied. Results: In the present study the recombinant fusion protein was expressed successfully and the highest expression of target protein was achieved in super broth medium containing 0.1% glucose and 0.2% L-arabinose. In Super broth medium, the optimum condition for recombinant protein expression was occurred at OD600 of 0.8, 0.1mM IPTG, one hour’s incubation time at 37 °C and BL21 (A1) host. Conclusion: The results of this study show that the optimum expression of E6 and E7 proteins from different genotypes of human papilloma virus can be performed. Moreover, by purification of recombinant protein and evaluation of its immunogenicity in mice, it can be used as a vaccine candidate against the human papilloma virus
    corecore