22 research outputs found

    Time-resolved photoelectron spectroscopy of wavepackets through a conical intersection in NO_2

    Get PDF
    We report the results of theoretical studies of the time-resolved femtosecond photoelectron spectroscopy of quantum wavepackets through the conical intersection between the first two ^2A′ states of NO_2. The Hamiltonian explicitly includes the pump-pulse interaction, the nonadiabatic coupling due to the conical intersection between the neutral states, and the probe interaction between the neutral states and discretized photoelectron continua. Geometry- and energy-dependent photoionization matrix elements are explicitly incorporated in these studies. Photoelectron angular distributions are seen to provide a clearer picture of the ionization channels and underlying wavepacket dynamics around the conical intersection than energy-resolved spectra. Time-resolved photoelectron velocity map images are also presented

    Energy- and angle-resolved pump–probe femtosecond photoelectron spectroscopy: Molecular rotation

    Get PDF
    We have incorporated a classical treatment of molecular rotation into our formulation of energy- and angle-resolved pump–probe photoelectron spectroscopy. This classical treatment provides a useful approach to extracting the photoelectron signal primarily associated with vibrational dynamics in cases where rotational motion is slow and the coupling between rotational and vibrational motion is weak. We illustrate its applicability with pump–probe photoelectron spectra for wave packets on the ^1Σ^+_u double-minimum state of Na_2

    Monitoring the effect of a control pulse on a conical intersection by time-resolved photoelectron spectroscopy

    Get PDF
    We have previously shown how femtosecond angle- and energy-resolved photoelectron spectroscopy can be used to monitor quantum wavepacket bifurcation at an avoided crossing or conical intersection and also how a symmetry-allowed conical intersection can be effectively morphed into an avoided crossing by photo-induced symmetry breaking. The latter result suggests that varying the parameters of a laser to modify a conical intersection might control the rate of passage of wavepackets through such regions, providing a gating process for different chemical products. In this paper, we show with full quantum mechanical calculations that such optical control of conical intersections can actually be monitored in real time with femtosecond angle- and energy-resolved photoelectron spectroscopy. In turn, this suggests that one can optimally control the gating process at a conical intersection by monitoring the photoelectron velocity map images, which should provide far more efficient and rapid optimal control than measuring the ratio of products. To demonstrate the sensitivity of time-resolved photoelectron spectra for detecting the consequences of such optical control, as well as for monitoring how the wavepacket bifurcation is affected by the control, we report results for quantum wavepackets going through the region of the symmetry-allowed conical intersection between the first two ^2A′ states of NO_2 that is transformed to an avoided crossing. Geometry- and energy-dependent photoionization matrix elements are explicitly incorporated in these studies. Time-resolved photoelectron angular distributions and photoelectron images are seen to systematically reflect the effects of the control pulse

    Pump-Probe Photoionization Study of the Passage and Bifurcation of a Quantum Wave Packet Across an Avoided Crossing

    Get PDF
    The application of femtosecond pump-probe photoelectron spectroscopy to directly observe vibrational wave packets passing through an avoided crossing is investigated using quantum wave packet dynamics calculations. Transfer of the vibrational wave packet between diabatic electronic surfaces, bifurcation of the wave packet, and wave packet construction via nonadiabatic mixing are shown to be observable as time-dependent splittings of peaks in the photoelectron spectra

    Time-resolved photoelectron spectroscopy of proton transfer in the ground state of chloromalonaldehyde: Wave-packet dynamics on effective potential surfaces of reduced dimensionality

    Get PDF
    We report on a simple but widely useful method for obtaining time-independent potential surfaces of reduced dimensionality wherein the coupling between reaction and substrate modes is embedded by averaging over an ensemble of classical trajectories. While these classically averaged potentials with their reduced dimensionality should be useful whenever a separation between reaction and substrate modes is meaningful, their use brings about significant simplification in studies of time-resolved photoelectron spectra in polyatomic systems where full-dimensional studies of skeletal and photoelectron dynamics can be prohibitive. Here we report on the use of these effective potentials in the studies of dump-probe photoelectron spectra of intramolecular proton transfer in chloromalonaldehyde. In these applications the effective potentials should provide a more realistic description of proton-substrate couplings than the sudden or adiabatic approximations commonly employed in studies of proton transfer. The resulting time-dependent photoelectron signals, obtained here assuming a constant value of the photoelectron matrix element for ionization of the wave packet, are seen to track the proton transfer

    Real-time observation of intramolecular proton transfer in the electronic ground state of chloromalonaldehyde: An ab initio study of time-resolved photoelectron spectra

    Get PDF
    The authors report on studies of time-resolved photoelectron spectra of intramolecular proton transfer in the ground state of chloromalonaldehyde, employing ab initio photoionization matrix elements and effective potential surfaces of reduced dimensionality, wherein the couplings of proton motion to the other molecular vibrational modes are embedded by averaging over classical trajectories. In the simulations, population is transferred from the vibrational ground state to vibrationally hot wave packets by pumping to an excited electronic state and dumping with a time-delayed pulse. These pump-dump-probe simulations demonstrate that the time-resolved photoelectron spectra track proton transfer in the electronic ground state well and, furthermore, that the geometry dependence of the matrix elements enhances the tracking compared with signals obtained with the Condon approximation. Photoelectron kinetic energy distributions arising from wave packets localized in different basins are also distinguishable and could be understood, as expected, on the basis of the strength of the optical couplings in different regions of the ground state potential surface and the Franck-Condon overlaps of the ground state wave packets with the vibrational eigenstates of the ion potential surface

    Introductory Lecture. Probing wavepacket dynamics with femtosecond energy- and angle-resolved photoelectron spectroscopy

    Get PDF
    Several recent studies have demonstrated how well-suited femtosecond time-resolved photoelectron spectra are for mapping wavepacket dynamics in molecular systems. Theoretical studies of femtosecond photoelectron spectra which incorporate a robust description of the underlying photoionization dynamics should enhance the utility of such spectra as a probe of wavepackets and of the evolution of electronic structure. This should be particularly true in regions of avoided crossings where the photoionization amplitudes and electronic structure may evolve rapidly with geometry. In this paper we present the results of studies of energy- and angle-resolved femtosecond photoelectron spectra for wavepackets in the diatomic systems, Na2 and NaI. Both cases involve motion through regions of avoided crossings. In Na2, however, wavepacket motion occurs on a single adiabatic potential with an inner and outer well and a barrier between them, while in NaI wavepackets move on the nonadiabatically coupled covalent (NaI) and ionic (Na+I–) potentials. Results of these studies will be used to illustrate the insight into wavepacket dynamics that time-resolved photoelectron spectra provide. For example, in the case of NaI these angle-resolved photoelectron spectra seem to offer some promise for probing real-time dynamics of intramolecular electron transfer occurring in the crossing region of the ionic and covalent states
    corecore