14 research outputs found

    Nitric oxide and its metabolites in the critical phase of illness: rapid biomarkers in the making

    Get PDF
    The potential of nitric oxide (NO) as a rapid assay biomarker, one that could provide a quantum leap in acute care, remains largely untapped. NO plays a crucial role as bronchodilator, vasodilator and inflammatory mediator. The main objective of this review is to demonstrate how NO is a molecule of heavy interest in various acute disease states along the emergency department and critical care spectrum: respiratory infections, central nervous system infections, asthma, acute kidney injury, sepsis, septic shock, and myocardial ischemia, to name just a few. We discuss how NO and its oxidative metabolites, nitrite and nitrate, are readily detectable in several body compartments and fluids, and as such they are associated with many of the pathophysiological processes mentioned above. With methods such as high performance liquid chromatography and chemiluminescence these entities are relatively easy and inexpensive to analyze. Emphasis is placed on diagnostic rapidity, as this relates directly to quality of care in acute care situations. Further, a rationale is provided for more bench, translational and clinical research in the field of NO biomarkers for such settings. Developing standard protocols for the aforementioned disease states, centered on concentrations of NO and its metabolites, can prove to revolutionize diagnostics and prognostication along a spectrum of clinical care. We present a strong case for developing these biomarkers more as point-of-care assays with potential of color gradient test strips for rapid screening of disease entities in acute care and beyond. This will be relevant to global health

    Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism

    Get PDF
    Currently, 1 out of every 59 children in the United States is diagnosed with autism. While initial research to find the possible causes for autism were mostly focused on the genome, more recent studies indicate a significant role for epigenetic regulation of gene expression and the microbiome. In this review article, we examine the connections between early disruption of the developing microbiome and gastrointestinal tract function, with particular regard to susceptibility to autism. The biological mechanisms that accompany individuals with autism are reviewed in this manuscript including immune system dysregulation, inflammation, oxidative stress, metabolic and methylation abnormalities as well as gastrointestinal distress. We propose that these autism-associated biological mechanisms may be caused and/or sustained by dysbiosis, an alteration to the composition of resident commensal communities relative to the community found in healthy individuals and its redox and epigenetic consequences, changes that in part can be due to early use and over-use of antibiotics across generations. Further studies are warranted to clarify the contribution of oxidative stress and gut microbiome in the pathophysiology of autism. A better understanding of the microbiome and gastrointestinal tract in relation to autism will provide promising new opportunities to develop novel treatment modalities

    Eculizumab improves fatigue in refractory generalized myasthenia gravis

    Get PDF

    Consistent improvement with eculizumab across muscle groups in myasthenia gravis

    Get PDF

    Towards nitric oxide based diagnostics: call to action

    No full text
    The discovery in the 1980s of the mammalian biosynthesis of nitric oxide (NO) and its roles in the immune, cardiovascular and nervous systems[1] established a startling new paradigm in the history of cellular signaling mechanisms. NO is one of the most important signaling molecules in the body and is involved in virtually every organ system, where it is responsible for modulating an astonishing variety of effects[1]. One can then imagine the host of diseases or conditions that might be caused or affected by the body\u27s dysregulation of NO production and signaling. As a highly reactive free radical, NO is implicated in a variety of pathophysiological processes, a few of which are mentioned inFigure 1. Maintaining NO homeostasis is crucial for optimal health and disease prevention, and developing novel and accurate biomarkers for NO production or availability will probably lead to better diagnostics and treatment strategies for a host of human diseases and have a profound effect on public health. In this letter, we make a strong case for the need for rapid validation of useful and accurate NO based biomarkers for diagnostic and prognostic utility in the clinical setting

    ‘Minimal symptom expression’ in patients with acetylcholine receptor antibody-positive refractory generalized myasthenia gravis treated with eculizumab

    No full text
    Background: The efficacy and tolerability of eculizumab were assessed in REGAIN, a 26-week, phase 3, randomized, double-blind, placebo-controlled study in anti-acetylcholine receptor antibody-positive (AChR+) refractory generalized myasthenia gravis (gMG), and its open-label extension. Methods: Attainment of ‘minimal symptom expression’ was evaluated using patient-reported outcome measures of gMG symptoms [MG activities of daily living scale (MG-ADL), 15-item MG quality of life questionnaire (MG-QOL15)] at the completion of REGAIN and during the open-label extension. ‘Minimal symptom expression’ was defined as MG-ADL total score of 0–1 or MG-QOL15 total score of 0–3. Results: At REGAIN week 26, more eculizumab-treated patients achieved ‘minimal symptom expression’ versus placebo [MG-ADL: 21.4% vs 1.7%; difference 19.8%; 95% confidence interval (CI) 8.5, 31.0; p = 0.0007; MG-QOL15: 16.1% vs 1.7%; difference 14.4%; 95% CI 4.3, 24.6; p = 0.0069]. During the open-label extension, the proportion of patients in the placebo/eculizumab group who achieved ‘minimal symptom expression’ increased after initiating eculizumab treatment and was sustained through 130 weeks of open-label eculizumab (MG-ADL: 1.7 to 27.8%; MG-QOL15: 1.7 to 19.4%). At extension study week 130, similar proportions of patients in the eculizumab/eculizumab and placebo/eculizumab groups achieved ‘minimal symptom expression’ (MG-ADL: 22.9% and 27.8%, respectively, p = 0.7861; MG-QOL15: 14.3% and 19.4%, respectively, p = 0.7531). The long-term tolerability of eculizumab was consistent with previous reports. Conclusions: Patients with AChR+ refractory gMG who receive eculizumab can achieve sustained ‘minimal symptom expression’ based on patient-reported outcomes. ‘Minimal symptom expression’ may be a useful tool in measuring therapy effectiveness in gMG. Trial registration: ClinicalTrials.gov NCT01997229, NCT02301624

    ‘Minimal symptom expression’ in patients with acetylcholine receptor antibody-positive refractory generalized myasthenia gravis treated with eculizumab

    No full text
    corecore