3 research outputs found

    Numerical study using finite element method for the thermal response of fiber specklegram sensors with changes in the length of the sensing zone

    Get PDF
    The response of fiber specklegram sensors (FSSs) is given as function of variations in the intensity distribution of the modal interference pattern or speckle pattern induced by external disturbances. In the present work, the behavior of a FSS sensing scheme under thermal perturbations is studied by means of computational simulations of the speckle patterns. These simulations are generated by applying the finite element method (FEM) to the modal interference in optical fibers as a function of the thermal disturbance and the length of the sensing zone. A correlation analysis is performed on the images generated in the simulations to evaluate the dependence between the changes in the speckle pattern grains and the intensity of the applied disturbance. The numerical simulation shows how the building characteristic of the length of sensing zone, combined with image processing, can be manipulated to control the metrological performance of the sensors.This work was partially funded by the Instituto Tecnológico Metropolitano (grant P20215), the Politécnico Jaime Isaza Cadavid (grant 2020/00132/001) and the Universidad Cooperativa de Colombia (grant INV2903). Y.A. Vélez also thanks the support given to her by the Instituto Tecnológico Metropolitano through its program of young researchers

    Refined identification of Vibrio bacterial flora from Acanthasther planci based on biochemical profiling and analysis of housekeeping genes

    Get PDF
    We used a polyphasic approach for precise identification of bacterial flora (Vibrio­naceae) isolated from crown-of-thorns starfish (COTS) from Lizard Island (Great Barrier Reef, Australia) and Guam (USA, Western Pacific Ocean). Previous 16S rRNA gene phylogenetic analysis was useful to allocate and identify isolates within the Photobacterium, Splendidus and Harveyi clades but failed in the identification of Vibrio harveyi-like isolates. Species of the V. harveyi group have almost indistinguishable phenotypes and genotypes, and thus, identification by standard biochemical tests and 16S rRNA gene analysis is commonly inaccurate. Biochemical profiling and sequence analysis of additional topA and mreB housekeeping genes were carried out for definitive identification of 19 bacterial isolates recovered from sick and wild COTS. For 8 isolates, biochemical profiles and topA and mreB gene sequence alignments with the closest relatives (GenBank) confirmed previous 16S rRNA-based identification: V. fortis and Photobacterium eurosenbergii species (from wild COTS), and V. natriegens (from diseased COTS). Further phylogenetic analysis based on topA and mreB concatenated sequences served to identify the remaining 11 V. harveyi-like isolates: V. owensii and V. rotiferianus (from wild COTS), and V. owensii, V. rotiferianus, and V. harveyi (from diseased COTS). This study further confirms the reliability of topA−mreB gene sequence analysis for identification of these close species, and it reveals a wider distribution range of the potentially pathogenic V. harveyi group

    Injection of Acanthaster planci with thiosulfate-citrate-bile-sucrose agar (TCBS). I. Disease induction

    Get PDF
    This is the first report of the successful induction of a transmissible disease in the coral-eating crown-of-thorns starfish Acanthaster planci (COTS). Injection of thiosulfate-citrate-bile-sucrose agar (TCBS) culture medium into COTS induced a disease characterized by discoloured and necrotic skin, ulcerations, loss of body turgor, accumulation of colourless mucus on many spines especially at their tip, and loss of spines. Blisters on the dorsal integument broke through the skin surface and resulted in large, open sores that exposed the internal organs. Oedema and reddened digestive tissues and destruction of connective fibers were common. Moreover, healthy COTS in contact with these infected animals also displayed signs of disease and died within 24 h. TCBS induced 100% mortality in injected starfish. There was no intro­duction of new pathogens into the marine environment. TCBS promoted the growth of COTS' naturally occurring Vibrionales to high densities with subsequent symbiont imbalance followed by disease and death
    corecore