40 research outputs found
Electrocatalytic Reduction of Carbon Dioxide to Methane on Single Transition Metal Atoms Supported on a Defective Boron Nitride Monolayer: First Principle Study
The electrochemical conversion of carbon dioxide (CO2) and water into useful multiâelectron transfer products, such as methanol (CH3OH) and methane (CH4), is a major challenge in facilitating a closed carbon cycle. Here, a systematic first principle study of the potential of single transition metal atoms (Sc to Zn, Mo, Rh, Ru, Pd, Ag, Pt, and Au) supported on experimentally available defective boron nitride monolayers with a boron monovacancy (TM/defective BN) to achieve highly efficient electrocatalytic CO2 reduction (ECR) to CH4 is carried out. Our computations reveal that Fe/defective BN, Co/defective BN, and Pt/defective BN nanosheets possess outstanding ECR activities with quite low (less negative) onset potentials of â0.52, â0.68, and â0.60 V, respectively. Given that Fe and Co are nonprecious metals, Fe/defective BN and Co/defective BN may provide costâeffective electrocatalysts. The high ECR activities of these TM/defective BN catalyst systems stem from the moderate electrocatalystsâ affinities for C and O, which modulate the free energies of ECR intermediates in the reaction pathways. Moreover, it is found that Fe/defective BN and Pt/defective BN show high selectivity of ECR to CH4. This finding highlights a strategy to design highly active and selective singleâatom electrocatalysts for ECR to CH4.S.S. and H.A. acknowledge the financial support by the Australian Research Council under Discovery Project (DP170104853). This research was undertaken with the assistance of resources provided by the National Computing Infrastructure facility at the Australian National University, allocated through both the National Computational Merit Allocation Scheme supported by the Australian Government and the Australian Research Council grant LE120100181 (Enhanced merit-based access and support at the new NCI petascale supercomputing facility, 2012â2015)
Catalytic reduction of nitrogen to produce ammonia by bismuth-based catalysts: state of the art and future prospects
This review provides an up-to-date review on Bi-based nitrogen-fixation materials and future directions for the development of new Bi-based nitrogen-fixation materials under ambient conditions.</p
Carbon nanotube heat transfer fluids for solar radiant heating of buildings
© 2018 Elsevier B.V. Solar-based radiant heating systems represent a sustainable, and relatively low-cost, technology to raise the temperature of the interior thermal mass of our buildings. Through the use of direct absorption solar thermal collectors, the same working fluid which absorbs the solar energy can be used to transfer the energy for storage in the thermal mass of the structure using a network of pipes embedded in concrete floors. This study investigates a promising working fluid which can be used in such systems â one which is based on multi-walled carbon-nanotubes suspended in normal base fluids. A major stumbling block affecting the wide spread use of carbon-nanotube nanofluids is their low dispersion stability at elevated temperatures, which significantly reduces the absorption capabilities of the nanofluids and could lead to clogging of the pumps used to circulate the fluids. In this paper, we report on a scalable UV-ozone (UVO) treatment technique to produce highly stable dispersions for the elevated temperatures experienced by working fluids in radiant heating systems. To probe suitability of UVO treated multi-walled carbon-nanotube (MWCNTs) for solar-assisted radiant heating systems, this paper investigates the effects of exposure time and temperature on stability, optical absorbance properties, the extent of functionalisation, and the photothermal conversion performance of UVO-treated MWCNT nanofluids. No agglomeration or degradation of the MWCNTs was observed at elevated temperatures (up to 150 °C), highlighting the stability of proposed nanofluids
The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts
© The Author(s) 2017. Versatile superstructures composed of nanoparticles have recently been prepared using various disassembly methods. However, little information is known on how the structural disassembly influences the catalytic performance of the materials. Here we show how the disassembly of an ordered porous La0.6Sr0.4MnO3 perovskite array, to give hexapod mesostructured nanoparticles, exposes a new crystal facet which is more active for catalytic methane combustion. On fragmenting three-dimensionally ordered macroporous (3DOM) structures in a controlled manner, via a process that has been likened to retrosynthesis, hexapod-shaped building blocks can be harvested which possess a mesostructured architecture. The hexapod-shaped perovskite catalyst exhibits excellent low temperature methane oxidation activity (T90%=438â°C; reaction rate=4.84 Ă 10â7âmolâmâ2âsâ1). First principle calculations suggest the fractures, which occur at weak joints within the 3DOM architecture, afford a large area of (001) surface that displays a reduced energy barrier for hydrogen abstraction, thereby facilitating methane oxidation
One-pot synthesis of S-doped Fe2O3/C magnetic nanocomposite as an adsorbent for anionic dye removal: equilibrium and kinetic studies
Abstract Novel S-doped Fe2O3/C nanocomposite was synthesized via a one-pot hydrothermal method and was used for the first time as an efficient adsorbent for Congo red dye (CR) removal from water solution. The obtained catalyst was characterized by various methods including Fourier transform infrared spectroscopy, energy dispersive X-ray spectrometry, vibration sample magnetometry, X-ray diffraction and field emission scanning electron microscopy. To improve the adsorption performance, some important parameters affecting dye removal were optimized such as adsorbent dosage, contact time, solution pH, initial dye concentration and ionic strength. At the optimum conditions, the maximum capacity of adsorption for this nanocomposite was 270.2 mg gâ1, which is better than other magnetic adsorbents for CR removal. The results of adsorption isotherm were matched with Langmuir model. Kinetic tests show that adsorption experimental data were best fitted by pseudo-first-order model. Graphical abstrac
Lanthanide-doped upconversion nanoparticles: Emerging intelligent light-activated drug delivery systems
The development of drug delivery systems (DDSs) using near infrared (NIR) light and upconversion nanoparticles (UCNPs) has generated intensive interest over the past five years. These NIR-initiated DDSs not only offer a high degree of spatial and temporal determination of therapeutic release but also provide precise control over the released dosage. Furthermore, these nanoplatforms confer several advantages over conventional light-based DDSsâNIR offers better tissue penetration depth and a reduced risk of cellular photo-damage caused by exposure to light at high-energy wavelengths (e.g., ultraviolet light, <400 nm). The development of DDSs that can be activated by low intensity NIR illumination is highly desirable to avoid exposing living tissues to excessive heat that can limit the in vivo application of these DDSs. This encompasses research in three directions: (i) enhancing the quantum yield of the UCNPs; (ii) incorporation of photo-responsive materials with red-shifted absorptions into the UCNPs; and (iii) tuning the UCNPs excitation wavelength. This review focuses on recent advances in the development of NIR-initiated DDS, with emphasis on the use of photo-responsive compounds and polymeric materials conjugated onto UCNPs. The challenges that limit UCNPs clinical applications, alongside with the aforementioned techniques that have emerged to overcome these limitations, are highlighted
Correlating morphology and doping effects with the carbon monoxide catalytic activity of Zn doped CeO2 nanocrystals
The effects of Zn-doping on CeO2 nanocrystals were investigated for the catalytic oxidation of carbon monoxide (CO). Incorporating Zn2+ into CeO2 nanocubes with an isotropic 3D structure can effectively regulate oxygen vacancy concentration, compared with CeO2 nanorods showing an anisotropic one dimensional 1D structure. The catalytic activity was shown to be governed by a morphology-dependent doping effect
In Situ Exsolution of Bimetallic Rh-Ni Nanoalloys: A Highly Efficient Catalyst for CO<inf>2</inf> Methanation
© 2018 American Chemical Society. Unique CO2 methanation catalysts comprising bimetallic Ni-Rh nanoalloy/3DOM LaAlO3 have been successfully prepared via a poly(methyl methacrylate) microsphere colloidal crystal-templating route, followed by the in situ growth of Ni nanoparticles (NPs). Here, we show that unlike traditional Ni particles deposited on a perovskite support, the exsolution of Ni occurs on both the external and internal surface of the porous perovskite substrate, leading to a strong metal-support interaction. Owing to the exsolution of Ni and the formation of Ni-Rh nanoalloys, a 52% enhancement in the methanation turnover frequency was obtained over the Ni-Rh/3DOM LaAlO3 [13.9 mol/(mol h)] compared to Rh/3DOM LaNi0.08Al0.92O3 [9.16 mol/(mol h)] before reduction treatment. The results show that the low-temperature reducibility, rich surface adsorbed oxygen species, and basic sites of the catalyst greatly improve its activity toward CO2 methanation. The hierarchically porous structure of the perovskite support provides a high dispersion of bimetallic Ni-Rh NPs
Polymerization of a Photocleavable Monomer Using Visible Light
The polymerization of the photocleavable monomer, o-nitrobenzyl methacrylate (NBMA), is investigated using photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization. The polymerizations under visible red (λ max = 635 nm, 0.7 mW cm-2) and yellow (λ max = 560 nm, 9.7 mW cm-2) light are performed and demonstrate rational evidence of a controlled/living radical polymerization process. Well-defined poly(o-nitrobenzyl methacrylate) (PNBMA) homopolymers with good control over the molecular weight and polymer dispersity are successfully synthesized by varying the irradiation time and/or targeted degree of polymerization. Chain extension of a poly(oligo(ethylene glycol) methyl ether methacrylate) macro-chain transfer agent with NBMA is carried out to fabricate photocleavable amphiphilic block copolymers (BCP). Finally, these self-assembled BCP rapidly dissemble under UV light suggesting the photoresponsive character of NBMA is not altered during the polymerization under yellow or red light. Such photoresponsive polymers can be potentially used for the remote-controlled delivery of therapeutic compounds