13 research outputs found
Mosquits de la comarca del Baix Llobregat (Diptera, Culicidae)
Des de l'octubre de 1991 fins al març de 1993 es van estudiar les poblacions de Culicidae (Diptera) de la comarca del Baix Llobregat, i es van completar les dades que d'aquest grup es tenien al Servei de Control de Mosquits del Baix Llobregat. S'han examinat 169 mostres amb un total de 4.324 individus en estat larvari, obtingudes de la prospecció directa de 107 focus,
i 3.863 individus adults obtinguts de la col·locaciĂł de 470 trampes de CO2, en 91 punts diferents.
Les trampes tenien una freqüència setmanal i es col·locaven al llarg d'una nit. Això ha permès citar 17 espècies agrupades en 6 gèneres i obtenir dades de la seva fenologia. D'altra banda s'han pogut caracteritzar els diferents biĂłtops larvaris agrupant-los en nou categories diferents i descriure la culĂcidofauna associada a cadascun d'ells. En estudiar les associacions larvĂ ries
d'espècies s'ha observat que la presència o absència d'associació ve determinada pel tipus de focus i no per la presència o absència d'altres espècies.Mosquitoes (Diptera, Culicidae) of the Baix Llobregat Area (Barcelona, Spain). Culicidae (Diptera) from the Baix Llobregat area were studied from October 1991 until March 1993. This work is a completion of data already gathered by the Baix Llobregat Mosquito Control Service. 4.324 larvae of 169 samples, taken from 107 larval focuses, were studied, as well as 3.863 adults collected by 470 CO2 traps, placed in 91 different localities. Traps were
installed weekly all through the night. The study results in 17 species grouped in 6 genera, and allows to obtain phenological data. On the other hand, larval biotopes could be classified in 9 different categories, and their mosquito fauna is described. When biocenoses are considered, it comes out that they are determined by the biotope characteristics, and not by reciprocal
incompatibilities between species
First records of Culex laticinctus Edwards, 1913 (Diptera: Culicidae) for Catalonia
info:eu-repo/semantics/publishedVersio
The use of artificial intelligence and automatic remote monitoring for mosquito surveillance
Mosquito surveillance consists in the routine monitoring of mosquito populations: to determine the presence/absence of certain mosquito species; to identify changes in the abundance and/or composition of mosquito populations; to detect the presence of invasive species; to screen for mosquito-borne pathogens; and, finally, to evaluate the effectiveness of control measures. This kind of surveillance is typically performed by means of traps, which are regularly collected and manually inspected by expert entomologists for the taxonomical identification of the samples. The main problems with traditional surveillance systems are the cost in terms of time and human resources and the lag that is created between the time the trap is placed and collected. This lag can be crucial for the accurate time monitoring of mosquito population dynamics in the field, which is determinant for the precise design and implementation of risk assessment programs. New perspectives in this field include the use of smart traps and remote monitoring systems, which generate data completely interoperable and thus available for the automatic running of prediction models; the performance of risk assessments; the issuing of warnings; and the undertaking of historical analyses of infested areas. In this way, entomological surveillance could be done automatically with unprecedented accuracy and responsiveness, overcoming the problem of manual inspection labour costs. As a result, disease vector species could be detected earlier and with greater precision, enabling an improved control of outbreaks and a greater protection from diseases, thereby saving lives and millions of Euros in health costs.info:eu-repo/semantics/publishedVersio
Tracking Asian tiger mosquito introductions in the Netherlands using Nextstrain
The Asian tiger mosquito Aedes albopictus is an undesirable invasive mosquito species that causes considerable nuisance through its biting behaviour, and has been proven to transmit more than 22 different viruses under laboratory conditions. Human-aided transportation, the capacity of winter diapause, and possibly global warming have contributed to the global invasion of Ae. albopictus. The species was found for the first time in the Netherlands in 2005, and since 2010 has been found introduced at many locations throughout the country. Elucidating the origin of these introduced mosquitoes could help the authorities on the planning and evaluation of the risk-based surveillance of Aedes invasive mosquitoes. This study aims to determine the genomic diversity of Ae. albopictus that is represented within and between collection sites with a database consisting of Ae. albopictus specimens from past introductions in the Netherlands, specimens from populations from other regions in the world, and data from specimens present in databases. In this study, complete mitochondrial genomes were sequenced, a recommended marker for phylogeography analysis of Ae. albopictus. Metadata is presented in a Nextstrain build containing 254 Ae. albopictus genomes up to October 2020. Overall, the phylogeny results of the Nextstrain build reveals a low mitogenomic diversity within Ae. albopictus. Genomic diversity of Ae. albopictus specimens found in the Netherlands fall within one main cluster which is hypothesised to represent the globally invasive strain of the species. Other organisations are stimulated to share data or materials for inclusion and improvement of the Nextstrain build, which can be accessed at https://nextstrain.nrcnvwa.nl/Aedes/20210728.info:eu-repo/semantics/publishedVersio
Spatial scale influences the distribution of viral diversity in the eukaryotic virome of the mosquito Culex pipiens
Our knowledge of the diversity of eukaryotic viruses has recently undergone a massive expansion. This diversity could infuence host
physiology through yet unknown phenomena of potential interest to the felds of health and food production. However, the assembly
processes of this diversity remain elusive in the eukaryotic viromes of terrestrial animals. This situation hinders hypothesis-driven
tests of virome infuence on host physiology. Here, we compare taxonomic diversity between different spatial scales in the eukaryotic
virome of the mosquito Culex pipiens. This mosquito is a vector of human pathogens worldwide. The experimental design involved
sampling in fve countries in Africa and Europe around the Mediterranean Sea and large mosquito numbers to ensure a thorough
exploration of virus diversity. A group of viruses was found in all countries. This core group represented a relatively large and diverse
fraction of the virome. However, certain core viruses were not shared by all host individuals in a given country, and their infection
rates fuctuated between countries and years. Moreover, the distribution of coinfections in individual mosquitoes suggested random
co-occurrence of those core viruses. Our results also suggested differences in viromes depending on geography, with viromes tending
to cluster depending on the continent. Thus, our results unveil that the overlap in taxonomic diversity can decrease with spatial scale
in the eukaryotic virome of C. pipiens. Furthermore, our results show that integrating contrasted spatial scales allows us to identify
assembly patterns in the mosquito virome. Such patterns can guide future studies of virome infuence on mosquito physiology.This work was supported by the 7th Framework Programme of the European Commission (grant FP7-613996 Vmerge), the Montpellier University of Excellence Program (MUSE, ArboSud project), and the Direction Générale de l’Alimentation from the French Ministry of Agriculture and Food (DGAl grant agreement: SPA17 n0079-E). The contents of this publication are the sole responsibility of the authors and do not necessarily refect the views of the European Commission.info:eu-repo/semantics/publishedVersio
Protocol per a la vigilĂ ncia i el control de les arbovirosis importades transmeses per mosquits a Catalunya
Arbovirus; Mosquits; Malalties vĂriquesArboviruses; Mosquitoes; Viral diseasesArbovirus; Mosquitos; Enfermedades vĂricasThis protocol aims to provide a guide for the surveillance of the most likely arbovirosis transmitted by mosquito vectors in Catalonia (West Nile virus, dengue and chikungunya), establishing a set of surveillance activities for these diseases and control of the vectors, depending on the risk level of arbovirosisEste protocolo tiene como objetivo ofrecer una guĂa para la vigilancia de las arbovirosi más probables transmitidas por vectores mosquitos en Cataluña (virus del Nilo Occidental, dengue y chikungunya), estableciendo un conjunto de actividades de vigilancia de estas enfermedades y de control los vectores, segĂşn el nivel de riesgo de arbovirosiAquest protocol tĂ© com a objectiu oferir una guia per a la vigilĂ ncia de les arbovirosis mĂ©s probables transmeses per vectors mosquits a Catalunya (virus del Nil Occidental, dengue i chikungunya), establint un conjunt d’activitats de vigilĂ ncia d’aquestes malalties i de control dels vectors, segons el nivell de risc d’arbovirosi
Protocol per a la vigilĂ ncia i el control de les arbovirosis transmeses per mosquits a Catalunya
Arbovirus; Mosquits; Malalties vĂriquesArboviruses; Mosquitoes; Viral diseasesArbovirus; Mosquitos; Enfermedades vĂricasThis protocol aims to provide a guide for the surveillance of the most likely arbovirosis transmitted by mosquito vectors in Catalonia (West Nile virus, dengue and chikungunya), establishing a set of surveillance activities for these diseases and control of the vectors, depending on the risk level of arbovirosisEste protocolo tiene como objetivo ofrecer una guĂa para la vigilancia de las arbovirosi más probables transmitidas por vectores mosquitos en Cataluña (virus del Nilo Occidental, dengue y chikungunya), estableciendo un conjunto de actividades de vigilancia de estas enfermedades y de control los vectores, segĂşn el nivel de riesgo de arbovirosiAquest protocol tĂ© com a objectiu oferir una guia per a la vigilĂ ncia de les arbovirosis mĂ©s probables transmeses per vectors mosquits a Catalunya (virus del Nil Occidental, dengue i chikungunya), establint un conjunt d’activitats de vigilĂ ncia d’aquestes malalties i de control dels vectors, segons el nivell de risc d’arbovirosi
Protocol per a la vigilĂ ncia i el control de les arbovirosis transmeses per mosquits a Catalunya
Arbovirus; Mosquits; Malalties vĂriquesArboviruses; Mosquitoes; Viral diseasesArbovirus; Mosquitos; Enfermedades vĂricasThis protocol aims to provide a guide for the surveillance of the most likely arbovirosis transmitted by mosquito vectors in Catalonia (West Nile virus, dengue and chikungunya), establishing a set of surveillance activities for these diseases and control of the vectors, depending on the risk level of arbovirosisEste protocolo tiene como objetivo ofrecer una guĂa para la vigilancia de las arbovirosi más probables transmitidas por vectores mosquitos en Cataluña (virus del Nilo Occidental, dengue y chikungunya), estableciendo un conjunto de actividades de vigilancia de estas enfermedades y de control los vectores, segĂşn el nivel de riesgo de arbovirosiAquest protocol tĂ© com a objectiu oferir una guia per a la vigilĂ ncia de les arbovirosis mĂ©s probables transmeses per vectors mosquits a Catalunya (virus del Nil Occidental, dengue i chikungunya), establint un conjunt d’activitats de vigilĂ ncia d’aquestes malalties i de control dels vectors, segons el nivell de risc d’arbovirosi
DetecciĂł d'arbovirus en vectors a Espanya
DescripciĂł del recurs: el 7 de gener de 2011Entre els anys 2001 i 2005 es van capturar i analitzar 72.895 femelles de mosquits (Diptera: Culicidae) i 6.871 de flebòtoms (Diptera: Psychodidae) en les estacions d'abundĂ ncia amb l'objectiu de detectar la presència de genoma d'arbovirus en diferents Ă rees d'Espanya, en especial en zones humides. L'estudi forma part d'un de mĂ©s general que tracta de la transmissiĂł d'arbovirus en quatre dels aiguamolls mĂ©s importants d'Espanya que es troben a Girona, Barcelona, Tarragona i Huelva. Els insectes es van recollir amb esquer humĂ , amb trampes de CO2 i amb trampes CDC i es van agrupar en pools segons la data de captura, la localitat i l'espècie. Pel que fa als flebòtoms, les mostres es van obtenir a partir del 2002 a Barcelona i Huelva i es van identificar com a subfamĂlia. Els culĂcids es van agrupar en 4.723 pools i pertanyien a 20 espècies dels gèneres Anopheles, Aedes, Ochlerotatus, Culex, Culiseta, Coquillettidia i Uranotaenia i els flebòtoms es van agrupar en 236 pools com a tals. Mentre es duia a terme l'estudi, es va detectar el mosquit invasor -Aedes (Stegomyia) albopictus (Skuse)- per primera vegada a Espanya, concretament a Sant Cugat del Vallès, durant l'estiu del 2004. Mitjançant inspeccions immediatament posteriors es va comprovar l'existència d'importants poblacions a la zona, i se'n va confirmar l'establiment. Aquesta Ă©s la primera notificaciĂł de l'espècie esmentada a la penĂnsula Ibèrica. Es van analitzar totes les femelles capturades posteriorment a l'Ă rea d'estudi. L'espècie de culĂcid mĂ©s abundant va ser Ochlerotatus caspius (40,9 %), seguida de Culex pipiens (32,3 %), Culex theileri (10,9 %), Anopheles atroparvus (6,6 %), i Culex modestus (4,6 %). Es van analitzar homogenats dels vectors per detectar directament ARN d'arbovirus dels gèneres Alphavirus, Flavivirus i Phlebovirus. No s'ha trobat ARN d'arbovirus patògens coneguts. En el cas dels mosquits, 111 pools van ser positius a Flavivirus, l'Ăşnic gènere detectat en aquest grup taxonòmic. Les seqüències de Flavivirus identificades sĂłn diferents de qualsevol Flavivirus de mosquit conegut i majoritĂ riament properes al virus Kamiti River (KRV) o al virus cell fusing agent (CFA), excepte en dos pools d'Andalusia que es troben properes al grup de virus transmesos per artròpodes. Per a totes les zones i espècies, es va calcular l'estimaciĂł del mĂ xim de versemblança de la taxa d'infecciĂł o the maximum likelihood estimation infection rate (MLE). Ae. albopictus tinguĂ© la MLE mĂ©s alta, de 47,14, seguida per Aedes vexans amb 43,67 en el conjunt de l'Ă rea d'estudi. Per sota d'aquestes espècies hi havia Culiseta annulata, amb 36,00. Les espècies mĂ©s abundants, Oc. caspius i Cx. pipiens, va obtenir valors MLE baixos (0,94 i 0,38 respectivament) en el conjunt de tota l'Ă rea. En el cas dels flebòtoms, 10 pools (9 dels quals de Barcelona) van donar positiu a Flavivirus semblants a Culex Flavivirus (CxFV). És la primera vegada que es troba genoma d'aquest gènere en flebòtoms de fora de l'Ă€frica. En 8 pools de Barcelona es va trobar un Phlebovirus similar al complex NĂ pols i al virus Massilia. Cal assenyalar que en el cas d'alguns mosquits, en especial en mostres dels gèneres Aedes i Ochlerotatus, el genoma detectat probablement eren seqüències d'ADN integrades en el genoma dels mosquits. Aquest fet l'han observat recentment altres autors. El 2006, seguint amb la campanya de detecciĂł d'arbovirus, es va trobar, entre 436 pools dels aiguamolls de Catalunya i 9 espècies de mosquit, un de positiu a un Flavivirus identificat com a virus Usutu (USUV) en un pool de 3 Cx. pipiens obtingut a Viladecans (Barcelona). Les dades d'homologia van mostrar que la soca espanyola pertanyia a l'USUV però que era mĂ©s propera a mostres africanes d'USUV que a les obtingudes a Europa central.With the aim of assessing the presence of arbovirus genome in vectors in different areas, especially wetlands, in Spain, a total of 72,895 female mosquitoes (Diptera: Culicidae) and 6,871 sandflies (Diptera: Psychodidade) were trapped during their season of abundance, and analyzed between the years 2001 and 2005. The study formed part of general arbovirus transmission research in four of the most important wetlands in Spain in the provinces of Girona, Barcelona, Tarragona, and Huelva. Insects were collected using human bait, CO2 traps, or light traps, and they were pooled according to date of collection, location, and species. In the case of sandflies, the period of study started in 2002 in Barcelona and Huelva and species were not identified. Mosquitoes were sorted into 4,723 pools belonging to 20 Culicidae species from the Anopheles, Aedes, Ochlerotatus, Culex, Culiseta, Coquillettidia, and Uranotaenia genera. Sandflies were sorted into 236 pools as a whole. During the study, the invasive mosquito Aedes (Stegomyia) albopictus (Skuse) was detected for the first time in Spain, in Sant Cugat del Vallès during August 2004. Dense populations of adults and larvae were found in subsequent surveys, confirming the establishment of this species in this area. This is the first report of the establishment of Ae. albopictus in the Iberian Peninsula. All captured females in the studied area belonging to this species were analyzed. The most abundant species was Ochlerotatus caspius (40.9 %), followed by Culex pipiens (32.3 %), Culex theileri (10.9 %), Anopheles atroparvus (6.6 %), and Culex modestus (4.6 %). Arboviral RNA was directly detected from vector homogenates for the genera Alphavirus, Flavivirus, and Phlebovirus. No arboviral RNA from known pathogenic arboviruses was found. In the case of mosquitoes, 111 pools tested positive for unknown mosquito Flavivirus, the only genus detected in this taxonomic group. The Flavivirus sequences identified were different from all known Flavivirus mosquito viruses, but very close to Kamiti River virus (KRV) or cell fusing agent virus (CFA) with the exception of two pools from Andalusia, close to the group of arthropod borne viruses. The maximum likelihood estimation infection rate (MLE) was calculated for all regions and species. Ae. albopictus had the highest MLE at 47.14, followed by Aedes vexans with 43.67 over the entire area. These species were followed by Culiseta annulata, with 36.00. The most common species, Oc. caspius and Cx. pipiens, had low MLE values -0.94 and 0.38, respectively- over the area as a whole. In the case of sandflies, 10 pools (9 in Barcelona) tested positive for a Flavivirus similar to Culex Flavivirus (CxFV) being this, the first time that Flavivirus genome is detected in sand flies outside Africa. Phlebovirus viruses similar to Naples complex and Massilia were found in 8 sandflies pools, all from Barcelona area. In some samples of mosquitoes, especially in genera Aedes and Ochlerotatus, detected genome was probably DNA sequences integrated in the mosquito genome as has been observed recently by other authors. In 2006, surveillance monitoring samples carried out in Catalonia detected, in 436 pools belonging to 9 mosquito species, a positive for Flavivirus identified as Usutu virus (USUV) in a pool of 3 Cx. pipiens obtained from the town of Viladecans, Barcelona. The homology data showed that the Spanish strain belongs to USUV species and is more related to the African USUV isolates than to central European isolates