7 research outputs found

    X-ray, UV, and optical observations of the accretion disk and boundary layer in the symbiotic star RT Crucis

    Get PDF
    Compared to mass transfer in cataclysmic variables, the nature of accretion in symbiotic binaries in which red giants transfer material to white dwarfs (WDs) has been difficult to uncover. The accretion flows in a symbiotic binary are most clearly observable, however, when there is no quasi-steady shell burning on the WD to hide them. RT Cru is the prototype of such non-burning symbiotics, with its hard (δ-type) X-ray emission providing a view of its innermost accretion structures. In the past 20 yr, RT Cru has experienced two similar optical brightening events, separated by ∼ 4000 days and with amplitudes of ΔV ∼ 1.5 mag. After Swift became operative, the Burst Alert Telescope (BAT) detector revealed a hard X-ray brightening event almost in coincidence with the second optical peak. Spectral and timing analyses of multi-wavelength observations that we describe here, from NuSTAR, Suzaku, Swift/X-Ray Telescope (XRT) + BAT + UltraViolet Optical Telescope (UVOT) (photometry) and optical photometry and spectroscopy, indicate that accretion proceeds through a disk that reaches down to the WD surface. The scenario in which a massive, magnetic WD accretes from a magnetically truncated accretion disk is not supported. For example, none of our data show the minute-time-scale periodic modulations (with tight upper limits from X-ray data) expected from a spinning, magnetic WD. Moreover, the similarity of the UV and X-ray fluxes, as well as the approximate constancy of the hardness ratio within the BAT band, indicate that the boundary layer of the accretion disk remained optically thin to its own radiation throughout the brightening event, during which the rate of accretion onto the WD increased to 6.7 × 10-9M· yr-1 (d/2 kpc)2. For the first time from a WD symbiotic, the NuSTAR spectrum showed a Compton reflection hump at E > 10 keV, due to hard X-rays from the boundary layer reflecting off of the surface of the WD; the reflection amplitude was 0.77 ± 0.21. The best fit spectral model, including reflection, gave a maximum post-shock temperature of kT = 53 ± 4 keV, which implies a WD mass of 1.25 ± 0.02 M·. Although the long-term optical variability in RT Cru is reminiscent of dwarf-novae-type outbursts, the hard X-ray behavior does not correspond to that observed in well-known dwarf nova. An alternative explanation for the brightening events could be that they are due to an enhancement of the accretion rate as the WD travels through the red giant wind in a wide orbit, with a period of about ∼4000 days. In either case, the constancy of the hard X-ray spectrum while the accretion rate rose suggests that the accretion-rate threshold between a mostly optically thin and thick boundary layer, in this object, may be higher than previously thought.Fil: Luna, Gerardo Juan Manuel. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Mukai, K.. National Aeronautics and Space Administration; Estados UnidosFil: Sokoloski, J. L.. Columbia University; Estados UnidosFil: Lucy, A. B.. Columbia University; Estados UnidosFil: Cusumano, G.. Istituto Nazionale di Astrofisica; ItaliaFil: Segreto, A.. Istituto Nazionale di Astrofisica; ItaliaFil: Jaque Arancibia, Marcelo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Nuñez, Natalia Edith. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio. Universidad Nacional de San Juan. Instituto de Ciencias Astronómicas, de la Tierra y del Espacio; ArgentinaFil: Puebla, R. E.. Universidad Central del Ecuador; EcuadorFil: Nelson, T.. University of Pittsburgh at Johnstown; Estados UnidosFil: Walter, F. M.. Columbia University; Estados Unido

    Mortality from gastrointestinal congenital anomalies at 264 hospitals in 74 low-income, middle-income, and high-income countries: a multicentre, international, prospective cohort study

    Get PDF
    Summary Background Congenital anomalies are the fifth leading cause of mortality in children younger than 5 years globally. Many gastrointestinal congenital anomalies are fatal without timely access to neonatal surgical care, but few studies have been done on these conditions in low-income and middle-income countries (LMICs). We compared outcomes of the seven most common gastrointestinal congenital anomalies in low-income, middle-income, and high-income countries globally, and identified factors associated with mortality. Methods We did a multicentre, international prospective cohort study of patients younger than 16 years, presenting to hospital for the first time with oesophageal atresia, congenital diaphragmatic hernia, intestinal atresia, gastroschisis, exomphalos, anorectal malformation, and Hirschsprung’s disease. Recruitment was of consecutive patients for a minimum of 1 month between October, 2018, and April, 2019. We collected data on patient demographics, clinical status, interventions, and outcomes using the REDCap platform. Patients were followed up for 30 days after primary intervention, or 30 days after admission if they did not receive an intervention. The primary outcome was all-cause, in-hospital mortality for all conditions combined and each condition individually, stratified by country income status. We did a complete case analysis. Findings We included 3849 patients with 3975 study conditions (560 with oesophageal atresia, 448 with congenital diaphragmatic hernia, 681 with intestinal atresia, 453 with gastroschisis, 325 with exomphalos, 991 with anorectal malformation, and 517 with Hirschsprung’s disease) from 264 hospitals (89 in high-income countries, 166 in middleincome countries, and nine in low-income countries) in 74 countries. Of the 3849 patients, 2231 (58·0%) were male. Median gestational age at birth was 38 weeks (IQR 36–39) and median bodyweight at presentation was 2·8 kg (2·3–3·3). Mortality among all patients was 37 (39·8%) of 93 in low-income countries, 583 (20·4%) of 2860 in middle-income countries, and 50 (5·6%) of 896 in high-income countries (p<0·0001 between all country income groups). Gastroschisis had the greatest difference in mortality between country income strata (nine [90·0%] of ten in lowincome countries, 97 [31·9%] of 304 in middle-income countries, and two [1·4%] of 139 in high-income countries; p≤0·0001 between all country income groups). Factors significantly associated with higher mortality for all patients combined included country income status (low-income vs high-income countries, risk ratio 2·78 [95% CI 1·88–4·11], p<0·0001; middle-income vs high-income countries, 2·11 [1·59–2·79], p<0·0001), sepsis at presentation (1·20 [1·04–1·40], p=0·016), higher American Society of Anesthesiologists (ASA) score at primary intervention (ASA 4–5 vs ASA 1–2, 1·82 [1·40–2·35], p<0·0001; ASA 3 vs ASA 1–2, 1·58, [1·30–1·92], p<0·0001]), surgical safety checklist not used (1·39 [1·02–1·90], p=0·035), and ventilation or parenteral nutrition unavailable when needed (ventilation 1·96, [1·41–2·71], p=0·0001; parenteral nutrition 1·35, [1·05–1·74], p=0·018). Administration of parenteral nutrition (0·61, [0·47–0·79], p=0·0002) and use of a peripherally inserted central catheter (0·65 [0·50–0·86], p=0·0024) or percutaneous central line (0·69 [0·48–1·00], p=0·049) were associated with lower mortality. Interpretation Unacceptable differences in mortality exist for gastrointestinal congenital anomalies between lowincome, middle-income, and high-income countries. Improving access to quality neonatal surgical care in LMICs will be vital to achieve Sustainable Development Goal 3.2 of ending preventable deaths in neonates and children younger than 5 years by 2030

    Effect of Pinus ponderosa afforestation on soilborne Frankia and saprophytic Actinobacteria in Northwest Patagonia, Argentina

    No full text
    Large areas in the extra-Andean region in the forest - steppe ecotone in “Northwestern Argentinean Patagonia” have been replaced by plantations of the exotic conifer Pinus ponderosa which modify soils physical and chemical factors and alter the biodiversity. Considering that in the region occur saprophytic soilborne actinobacteria that play important role as the fixation of atmospheric nitrogen (N2) in symbiosis with native plant species and the production of bioactive molecules in plants rhizosphere, we aimed to study the effect of the plantation on the abundance of the N2 fixer Frankia and on the genus diversity of cultivable rhizospheric actinobacteria. The study was performed with soils of six paired sites with pine plantations and natural neighbor areas (including steppes or shrublands). Abundance of infective Frankia was estimated by evaluating the nodulation capacity of soils, through a plant bioassay using Ochetophila trinervis as trap plant. Isolation trials for saprophytic actinobacteria were performed by applying chemotactic and successive soils dilutions methods. We concluded that P. ponderosa afforestation affect soil actinobacteria. This was mainly evidenced by a decrease in the Frankia nodulation capacity in O. trinervis, which was related to plantation age, to lower soil carbon and nitrogen content, higher available phosphorus, and to a slight decrease in soils pH. Pine plantation influence on the cultivable saprophytic actinobacteria was less clear. The study highlights the importance of soils as source of Frankia and rhizospheric actinobacteria in relation to disturbance caused by pine plantation in natural environments with native actinorhizal plant species.Fil: Arancibia, Natalia B.. Universidad Nacional del Comahue. Centro Regional Universitario Bariloche; ArgentinaFil: Solans, Mariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Mestre, María Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales. Universidad Nacional del Comahue. Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales.; ArgentinaFil: Chaia, Eugenia Esther. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    RAMSES II: RAMan Search for Extragalactic Symbiotic Stars Project Concept, Commissioning, and Early Results from the Science Verification Phase

    Get PDF
    Symbiotic stars (SySts) are long-period interacting binaries composed of a hot compact star, an evolved giant star, and a tangled network of gas and dust nebulae. They represent unique laboratories for studying a variety of important astrophysical problems, and have also been proposed as possible progenitors of SNIa. Presently, we know of 257 SySts in the Milky Way and 69 in external galaxies. However, these numbers are still in striking contrast with the predicted population of SySts in our Galaxy. Because of other astrophysical sources that mimic SySt colors, no photometric diagnostic tool has so far demonstrated the power to unambiguously identify a SySt, thus making the recourse to costly spectroscopic follow-up still inescapable. In this paper we present the concept, commissioning, and science verification phases, as well as the first scientific results, of RAMSES II—a Gemini Observatory Instrument Upgrade Project that has provided each GMOS instrument at both Gemini telescopes with a set of narrow-band filters centered on the Raman O vi 6830 Å band. Continuum-subtracted images using these new filters clearly revealed known SySts with a range of Raman O vi line strengths, even in crowed fields. RAMSES II observations also produced the first detection of Raman O vi emission from the SySt LMC 1 and confirmed Hen 3-1768 as a new SySt—the first photometric confirmation of a SySt. Via Raman O vi narrow-band imaging, RAMSES II provides the astronomical community with the first purely photometric tool for hunting SySts in the local universe

    Ecosystem Services from Tropical Forests: Review of Current Science

    No full text

    Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study

    No full text
    corecore