700 research outputs found
The role of climatic and terrain attributes in estimating baseflow recession in tropical catchments
The understanding of low flows in rivers is paramount more than ever as demand for water increases on a global scale. At the same time, limited streamflow data to investigate this phenomenon, particularly in the tropics, makes the provision of accurate estimations in ungauged areas an ongoing research need. This paper analysed the potential of climatic and terrain attributes of 167 tropical and sub-tropical unregulated catchments to predict baseflow recession rates. Daily streamflow data (m<sup>3</sup> s<sup>&ndash;1</sup>) from the Global River Discharge Center (GRDC) and a linear reservoir model were used to obtain baseflow recession coefficients (<i>k</i><sub>bf</sub>) for these catchments. Climatic attributes included annual and seasonal indicators of rainfall and potential evapotranspiration. Terrain attributes included indicators of catchment shape, morphology, land cover, soils and geology. Stepwise regression was used to identify the best predictors for baseflow recession coefficients. Mean annual rainfall (MAR) and aridity index (AI) were found to explain 49% of the spatial variation of <i>k</i><sub>bf</sub>. The rest of climatic indices and the terrain indices average catchment slope (SLO) and tree cover were also good predictors, but co-correlated with MAR. Catchment elongation (CE), a measure of catchment shape, was also found to be statistically significant, although weakly correlated. An analysis of clusters of catchments of smaller size, showed that in these areas, presumably with some similarity of soils and geology due to proximity, residuals of the regression could be explained by SLO and CE. The approach used provides a potential alternative for <i>k</i><sub>bf</sub> parameterisation in ungauged catchments
Evaluation of precipitation estimation accuracy in reanalyses, satellite products, and an ensemble method for regions in Australia and south and east Asia
Precipitation estimates from reanalyses and satellite observations are routinely used in hydrologic applications, but their accuracy is seldom systematically evaluated. This study used high-resolution gauge-only daily precipitation analyses for Australia (SILO) and South and East Asia [Asian Precipitation-Highly-Resolved Observational Data Integration Towards Evaluation (APHRODITE)] to calculate the daily detection and accuracy metrics for three reanalyses [ECMWF Re-Analysis Interim (ERA-Interim), Japanese 25-yr Reanalysis (JRA-25), and NCEP-Department of Energy (DOE) Global Reanalysis 2] and three satellite-based precipitation products [Tropical Rainfall Measuring Mission (TRMM) 3B42V6, Climate Prediction Center morphing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Imagery Using Artificial Neural Networks (PERSIANN)]. A depthfrequency- adjusted ensemble mean of the reanalyses and satellite products was also evaluated. Reanalyses precipitation from ERA-Interim in southern Australia (SAu) and northern Australasia (NAu) showed higher detection performance. JRA-25 had a better performance in South and East Asia (SEA) except for the monsoon period, in which satellite estimates from TRMM and CMORPH outperformed the reanalyses. In terms of accuracy metrics (correlation coefficient, root-mean-square difference, and a precipitation intensity proxy, which is the ratio of monthly precipitation amount to total days with precipitation) and over the three subdomains, the depth-frequency-adjusted ensemble mean generally outperformed or was nearly as good as any of the single members. The results of the ensemble show that additional information is captured from the different precipitation products. This finding suggests that, depending on precipitation regime and location, combining (re)analysis and satellite products can lead to better precipitation estimates and, thus,more accurate hydrological applications than selecting any single product
The ALMA Frontier Fields Survey - IV. Lensing-corrected 1.1 mm number counts in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223
[abridged] Characterizing the number counts of faint, dusty star-forming
galaxies is currently a challenge even for deep, high-resolution observations
in the FIR-to-mm regime. They are predicted to account for approximately half
of the total extragalactic background light at those wavelengths. Searching for
dusty star-forming galaxies behind massive galaxy clusters benefits from strong
lensing, enhancing their measured emission while increasing spatial resolution.
Derived number counts depend, however, on mass reconstruction models that
properly constrain these clusters. We estimate the 1.1 mm number counts along
the line of sight of three galaxy clusters, i.e. Abell 2744, MACSJ0416.1-2403
and MACSJ1149.5+2223, which are part of the ALMA Frontier Fields Survey. We
perform detailed simulations to correct these counts for lensing effects. We
use several publicly available lensing models for the galaxy clusters to derive
the intrinsic flux densities of our sources. We perform Monte Carlo simulations
of the number counts for a detailed treatment of the uncertainties in the
magnifications and adopted source redshifts. We find an overall agreement among
the number counts derived for the different lens models, despite their
systematic variations regarding source magnifications and effective areas. Our
number counts span ~2.5 dex in demagnified flux density, from several mJy down
to tens of uJy. Our number counts are consistent with recent estimates from
deep ALMA observations at a 3 level. Below 0.1 mJy, however,
our cumulative counts are lower by 1 dex, suggesting a flattening in
the number counts. In our deepest ALMA mosaic, we estimate number counts for
intrinsic flux densities 4 times fainter than the rms level. This
highlights the potential of probing the sub-10 uJy population in larger samples
of galaxy cluster fields with deeper ALMA observations.Comment: 19 pages, 14 figures, 3 tables. Accepted for publication in A&
The evolution of Balmer jump selected galaxies in the ALHAMBRA survey
We present a new color-selection technique, based on the Bruzual & Charlot
models convolved with the bands of the ALHAMBRA survey, and the redshifted
position of the Balmer jump to select star-forming galaxies in the redshift
range 0.5 < z < 1.5. These galaxies are dubbed Balmer jump Galaxies BJGs. We
apply the iSEDfit Bayesian approach to fit each detailed SED and determine
star-formation rate (SFR), stellar mass, age and absolute magnitudes. The mass
of the haloes where these samples reside are found via a clustering analysis.
Five volume-limited BJG sub-samples with different mean redshifts are found to
reside in haloes of median masses slightly
increasing toward z=0.5. This increment is similar to numerical simulations
results which suggests that we are tracing the evolution of an evolving
population of haloes as they grow to reach a mass of at z=0.5. The likely progenitors of our samples at z3 are Lyman
Break Galaxies, which at z2 would evolve into star-forming BzK galaxies,
and their descendants in the local Universe are elliptical galaxies.Hence, this
allows us to follow the putative evolution of the SFR, stellar mass and age of
these galaxies. From z1.0 to z0.5, the stellar mass of the volume
limited BJG samples nearly does not change with redshift, suggesting that major
mergers play a minor role on the evolution of these galaxies. The SFR evolution
accounts for the small variations of stellar mass, suggesting that star
formation and possible minor mergers are the main channels of mass assembly.Comment: 14 pages, 10 figures. Submitted to A&A. It includes first referee's
comments. Abstract abridged due to arXiv requirement
KELT-17: a chemically peculiar Am star and a hot-Jupiter planet
Context. The detection of planets orbiting chemically peculiar stars is very
scarcely known in the literature. Aims. To determine the detailed chemical
composition of the remarkable planet host star KELT-17. This object hosts a
hot-Jupiter planet with 1.31 MJup detected by transits, being one of the more
massive and rapidly rotating planet hosts to date. We aimed to derive a
complete chemical pattern for this star, in order to compare it with those of
chemically peculiar stars. Methods. We carried out a detailed abundance
determination in the planet host star KELT-17 via spectral synthesis. Stellar
parameters were estimated iteratively by fitting Balmer line profiles and
imposing the Fe ionization balance, using the program SYNTHE together with
plane-parallel ATLAS12 model atmospheres. Specific opacities for an arbitrary
composition and microturbulence velocity vmicro were calculated through the
Opacity Sampling (OS) method. The abundances were determined iteratively by
fitting synthetic spectra to metallic lines of 16 different chemical species
using the program SYNTHE. The complete chemical pattern of KELT-17 was compared
to the recently published average pattern of Am stars. We estimated the stellar
radius by two methods: a) comparing the synthetic spectral energy distribution
with the available photometric data and the Gaia parallax, and b) using a
Bayesian estimation of stellar parameters using stellar isochrones. Results. We
found overabundances of Ti, Cr, Mn, Fe, Ni, Zn, Sr, Y, Zr, and Ba, together
with subsolar values of Ca and Sc. Notably, the chemical pattern agrees with
those recently published of Am stars, being then KELT-17 the first exoplanet
host whose complete chemical pattern is unambiguously identified with this
class. The stellar radius derived by two different methods agrees to each other
and with those previously obtained in the literature.Comment: 5 pages, 8 figures, 2 tables, A&A accepte
Elemental abundances differences in the massive planet-hosting wide binary HD 196067-68
It has been suggested that small chemical anomalies observed in
planet-hosting wide binary systems could be due to planet signatures, where the
role of the planetary mass is still unknown. We search for a possible planet
signature by analyzing the Tc trends in the remarkable binary system
HD196067-HD196068. At the moment, only HD196067 is known to host a planet which
is near the brown dwarf regime. We take advantage of the strong physical
similarity between both stars, which is crucial to achieving the highest
possible precision in stellar parameters and elemental chemical abundances.
This system gives us a unique opportunity to explore if a possible depletion of
refractories in a binary system could be inhibited by the presence of a massive
planet. We performed a line-by-line chemical differential study, employing the
non-solar-scaled opacities, in order to reach the highest precision in the
calculations. After differentially comparing both stars, HD196067 displays a
clear deficiency in refractory elements in the Tc plane, a lower iron content
(0.051 dex) and also a lower Li I content (0.14 dex) than its companion. In
addition, the differential abundances reveal a Tc trend. These targets
represent the first cases of an abundance difference around a binary system
hosting a super-Jupiter. Although we explored several scenarios to explain the
chemical anomalies, none of them can be entirely ruled out. Additional
monitoring of the system as well as studies of larger sample of wide binary
systems hosting massive planets, are needed to better understand the chemical
abundance trend observed in HD196067-68.Comment: 9 pages, six figures, three table
Calibration of semi-analytic models of galaxy formation using Particle Swarm Optimization
We present a fast and accurate method to select an optimal set of parameters
in semi-analytic models of galaxy formation and evolution (SAMs). Our approach
compares the results of a model against a set of observables applying a
stochastic technique called Particle Swarm Optimization (PSO), a self-learning
algorithm for localizing regions of maximum likelihood in multidimensional
spaces that outperforms traditional sampling methods in terms of computational
cost. We apply the PSO technique to the SAG semi-analytic model combined with
merger trees extracted from a standard CDM N-body simulation. The
calibration is performed using a combination of observed galaxy properties as
constraints, including the local stellar mass function and the black hole to
bulge mass relation. We test the ability of the PSO algorithm to find the best
set of free parameters of the model by comparing the results with those
obtained using a MCMC exploration. Both methods find the same maximum
likelihood region, however the PSO method requires one order of magnitude less
evaluations. This new approach allows a fast estimation of the best-fitting
parameter set in multidimensional spaces, providing a practical tool to test
the consequences of including other astrophysical processes in SAMs.Comment: 11 pages, 4 figures, 1 table. Accepted for publication in ApJ.
Comments are welcom
Thermo-mechanical behavior of a granodiorite from the Liquiñe fractured geothermal system (39°S) in the Southern Volcanic Zone of the Andes
Fractures and faults in granitic rocks play an important role in geothermal systems because they permit the circulation of hot fluids. However, the thermo-hydro-mechanical behavior of granitic rocks has predominantly been studied at temperatures exceeding 300 °C but many geothermal systems experience temperatures much lower than this. The aim of this study was to evaluate how the depth, temperature, and amount and rate of mechanical loading associated conditions, that are realistic in low temperature geothermal system, influence the physical properties of geothermal reservoir hosting rock. We carried out both room temperature and low temperature thermo-mechanical tests on a granodiorite sample from the Liquiñe area, Chile, and performed post-experimental X-ray microtomography analysis to numerically estimate the permeability of the generated fractures. The results showed that both rock strength and rock stiffness decreased with increments of temperature treatment related to the development of thermal crack damage at temperatures > 150 °C and through the development of sub-critical cracking at constant temperatures between 50–75 °C. Slowest deformed samples also exhibited lower strengths, attributed to the development of sub-critical cracking. The cyclic triaxial loading test indicated that significant mechanical fracture damage was only initiated above 80% of the peak stress regardless of the number of repeated loading cycles at lower stresses. Low-temperature treatment appears to be a conditioning factor, but not the dominant factor in controlling the physical properties of reservoir hosting rocks. Our findings indicate that thermal crack damage is likely important for developing microfracture related permeability at depths between around 2–6 km where the temperature is sufficiently high to induce thermal cracking. At shallower depths, such was previously estimated the reservoir of Liquiñe, thermal crack damage is only generated adjacent to fractures that remain open and circulate the hot fluids but sub-critical cracking over time reduces the strength of rocks in lower temperature regimes. These processes combined to produce a geothermal reservoir in Liquiñe which likely first required the presence of a highly fractured fault zone
Sinistral shear during Middle Jurassic emplacement of the Matancilla Plutonic Complex in northern Chile (25.4\u3csup\u3e◦\u3c/sup\u3e S) as evidence of oblique plate convergence during the early Andean orogeny
Arc magmatism in a continental subduction zone facilitates rheological weakening of the rigid upper plate, and can accommodate the partitioned trench-parallel component of oblique subduction into an intra-arc shear zone. We document a shear zone at latitude 25.4◦ S near Taltal, Chile that was associated with intrusion of the Matancilla Plutonic Complex at ~169 Ma to evaluate intra-arc deformation and possible tectonic plate configurations during this time period. Polyphase folding of Paleozoic metasedimentary rocks is overprinted by mylonitic fabrics that are most extensive in a zone up to 1.4 km wide in the thermal aureole of the granodioritic Matancilla pluton, where contact metamorphic andalusite porphyroblasts are synkinematic with fabric development. Mylonite in metasedimentary rocks is overprinted by a ~130 Ma granodiorite (zircon U–Pb) and by ~133 Ma postkinematic monazite (U–Pb). Within the Jurassic Matancilla granodiorite, pervasive ductile shear occurs along the intrusive contact while centimeter-scale discrete high-strain zones throughout the pluton are associated with focused hydrothermal alteration and reaction weakening. Mylonitic foliation in the metasedimentary rocks and within the pluton strikes N- to NE and dips steeply, while stretching lineations are subhorizontal on average. Kinematic indicators record dominantly sinistral shear, though some dextral or symmetric indicators and S \u3e L fabrics suggest a component of coaxial strain and flattening. Sinistral strike-slip kinematics in the Matancilla shear zone may indicate that Middle Jurassic convergence had sinistral obliquity that was locally partitioned into the contemporaneous magmatic arc. Sinistral-oblique convergence would require the Phoenix- Farallon spreading center to be north of ~25◦ S in the Middle Jurassic, providing a constraint to plate reconstructions during the early Andean orogeny
- …