41 research outputs found

    Constraints on dark photons and axion-like particles from SuperCDMS Soudan

    Get PDF
    We present an analysis of electron recoils in cryogenic germanium detectors operated during the SuperCDMS Soudan experiment. The data are used to set new constraints on the axioelectric coupling of axion-like particles and the kinetic mixing parameter of dark photons, assuming the respective species constitutes all of the galactic dark matter. This study covers the mass range from 40 eV/c² to 500 eV/c² for both candidates, excluding previously untested parameter space for masses below ~1 keV/c². For the kinetic mixing of dark photons, values below 10⁻¹⁵ are reached for particle masses around 100 eV/c²; for the axioelectric coupling of axion-like particles, values below 10⁻¹² are reached for particles with masses in the range of a few-hundred eV/c²

    Search for low-mass dark matter with CDMSlite using a profile likelihood fit

    Get PDF
    The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) searches for interactions between dark matter particles and germanium nuclei in cryogenic detectors. The experiment has achieved a low energy threshold with improved sensitivity to low-mass (<10  GeV/c^2) dark matter particles. We present an analysis of the final CDMSlite dataset, taken with a different detector than was used for the two previous CDMSlite datasets. This analysis includes a data “salting” method to protect against bias, improved noise discrimination, background modeling, and the use of profile likelihood methods to search for a dark matter signal in the presence of backgrounds. We achieve an energy threshold of 70 eV and significantly improve the sensitivity for dark matter particles with masses between 2.5 and 10  GeV/c^2 compared to previous analyses. We set an upper limit on the dark matter-nucleon scattering cross section in germanium of 5.4×10^(-42)  cm^2 at 5  GeV/c^2, a factor of ∼2.5 improvement over the previous CDMSlite result

    Energy loss due to defect formation from ^(206)Pb recoils in SuperCDMS germanium detectors

    Get PDF
    The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ ^(210)Pb sources. We examine the spectrum of ^(206)Pb nuclear recoils near its expected 10^3 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7^(+0.6)_(−0.5) eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches

    Search for low-mass dark matter with CDMSlite using a profile likelihood fit

    Get PDF
    The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) searches for interactions between dark matter particles and germanium nuclei in cryogenic detectors. The experiment has achieved a low energy threshold with improved sensitivity to low-mass (<10  GeV/c^2) dark matter particles. We present an analysis of the final CDMSlite dataset, taken with a different detector than was used for the two previous CDMSlite datasets. This analysis includes a data “salting” method to protect against bias, improved noise discrimination, background modeling, and the use of profile likelihood methods to search for a dark matter signal in the presence of backgrounds. We achieve an energy threshold of 70 eV and significantly improve the sensitivity for dark matter particles with masses between 2.5 and 10  GeV/c^2 compared to previous analyses. We set an upper limit on the dark matter-nucleon scattering cross section in germanium of 5.4×10^(-42)  cm^2 at 5  GeV/c^2, a factor of ∼2.5 improvement over the previous CDMSlite result

    Search for low-mass dark matter with CDMSlite using a profile likelihood fit

    Get PDF
    The Cryogenic Dark Matter Search low ionization threshold experiment (CDMSlite) searches for interactions between dark matter particles and germanium nuclei in cryogenic detectors. The experiment has achieved a low energy threshold with improved sensitivity to low-mass (<10  GeV/c^2) dark matter particles. We present an analysis of the final CDMSlite dataset, taken with a different detector than was used for the two previous CDMSlite datasets. This analysis includes a data “salting” method to protect against bias, improved noise discrimination, background modeling, and the use of profile likelihood methods to search for a dark matter signal in the presence of backgrounds. We achieve an energy threshold of 70 eV and significantly improve the sensitivity for dark matter particles with masses between 2.5 and 10  GeV/c^2 compared to previous analyses. We set an upper limit on the dark matter-nucleon scattering cross section in germanium of 5.4×10^(-42)  cm^2 at 5  GeV/c^2, a factor of ∼2.5 improvement over the previous CDMSlite result

    Energy loss due to defect formation from ^(206)Pb recoils in SuperCDMS germanium detectors

    Get PDF
    The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ ^(210)Pb sources. We examine the spectrum of ^(206)Pb nuclear recoils near its expected 10^3 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7^(+0.6)_(−0.5) eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches

    Search for low-mass dark matter via bremsstrahlung radiation and the Migdal effect in SuperCDMS

    Get PDF
    We present a new analysis of previously published SuperCDMS data using a profile likelihood framework to search for sub-GeV dark matter (DM) particles through two inelastic scattering channels: bremsstrahlung radiation and the Migdal effect. By considering these possible inelastic scattering channels, experimental sensitivity can be extended to DM masses that are undetectable through the DM-nucleon elastic scattering channel, given the energy threshold of current experiments. We exclude DM masses down to 220 MeV/c2 at 2.7×10-30 cm2 via the bremsstrahlung channel. The Migdal channel search provides overall considerably more stringent limits and excludes DM masses down to 30 MeV/c2 at 5.0×10-30 cm2
    corecore