6 research outputs found
Observation of the acceleration of a single bunch by using the induction device in the kek proton synchrotron
A single rf bunch in the KEK proton synchrotron was accelerated with an induction acceleration method from the injection energy of 500 MeV to 5 GeV.</p
All-ion accelerators: An injector-free synchrotron
A medium-energy synchrotron capable of accelerating all-ion species is proposed. The accelerator employs a strong focusing lattice for ion-beam guiding and induction acceleration for acceleration and longitudinal capture, which is driven by a switching power supply. All ions, including cluster ions in their possible and arbitrary charge state, are accelerated in a single accelerator. Since the switching power supply employing solid-state switching elements is energized by a trigger signal, which is generated from a bunch monitor signal produced by a circulating ion bunch, the induction acceleration always synchronizes with the bunch circulation. This feature enables the realization of an almost injector-free synchrotron
Experimental Demonstration of the Induction Synchrotron
We report an experimental demonstration of the induction synchrotron, the concept of which has been proposed as a future accelerator for the second generation of neutrino factory or hadron collider. The induction synchrotron supports a superbunch and a superbunch permits more charge to be accelerated while observing the constraints of the transverse space-charge limit. By using a newly developedinduction acceleration system instead of radio-wave acceleration devices, a single proton bunch injected from the 500 MeV booster ring and captured by the barrier bucket created by the induction step voltages was accelerated to 6 GeV in the KEK proton synchrotron
Comparison of High Gradient Performance in Varying Cavity Geometries
Four types of CLIC prototype TW accelerator structures were high-gradient tested at Nextef, KEK, up to 100 MV/m level and the fifth is under test now. The ramping speed of each processing and the resultant breakdown rate were compared among them. From this comparison, it was found that the ramping speed of the structures with opening ports for HOM damping with magnetic coupling became slow and the resultant breakdown rate became high. It was also found that that with lower surface magnetic field showed faster ramping in processing and lower breakdown rate. This indicates the role of the magnetic field on vacuum breakdowns in copper structure at the region of several tens to 100 MV/m. In this paper, we review the processing stage and the high gradient performance of these structures trying to discuss the relevant parameters, surface electric field, surface magnetic field and other parameters such as Sc, “complex pointing vector”, to the performance difference