248 research outputs found

    Visualization of coronary plaque in type 2 diabetes mellitus patients using a new 40MHz intravascular ultrasound imaging system

    Get PDF
    SummaryBackgroundPrevious epidemiological studies demonstrated plaque vulnerability to be high in diabetic patients. iMap-intravascular ultrasound (IVUS) is a recently developed radiofrequency 40MHz IVUS imaging system for tissue characterization. This study aimed to characterize coronary plaque in target lesions of diabetic patients using iMap-IVUS.MethodsWe studied 175 treated vessels in 146 patients with stable angina pectoris and analyzed plaque components of culprit lesions by iMAP-IVUS. Patients were divided into 2 groups: non-diabetic (non-DM: 112 vessels, 93 patients) and diabetic (DM: 63 vessels, 53 patients).ResultsIn gray-scale IVUS 2D analysis, there were no differences in IVUS parameters. In 3D analysis, the DM group tended to have a larger plaque volume (p=0.07) and plaque burden (p=0.10). At minimum lumen sites, the absolute lipidic and necrotic areas (0.84±0.44mm2 vs. 0.58±0.41mm2, p<0.001, and 2.42±1.65mm2 vs. 1.46±1.76mm2, p<0.001, respectively) and percent lipidic and necrotic areas were significantly greater in the DM than in the non-DM group (8.39±3.38% vs. 5.25±2.30%, p<0.0001, and 23.65±11.54% vs. 12.99±10.71%, p<0.0001, respectively). In addition, the absolute lipidic and necrotic volumes (11.75±10.59mm3 vs. 8.18±6.24mm3, p<0.01, and 29.99±28.90mm3 vs. 19.44±19.35mm3, p<0.01, respectively) and percent lipidic and necrotic volumes were significantly greater in the DM than in the non-DM group (6.27±1.92% vs. 5.13±1.82%, p<0.0001, and 16.54±7.56% vs. 12.08±6.05%, p<0.0001, respectively).ConclusionCharacterization of coronary plaque by iMAP-IVUS in diabetic patients showed increased lipidic amount and necrotic plaque volume relative to subjects without DM

    Targeting pre-mRNA splicing in cancers: roles, inhibitors, and therapeutic opportunities

    Get PDF
    Accumulating evidence has indicated that pre-mRNA splicing plays critical roles in a variety of physiological processes, including development of multiple diseases. In particular, alternative splicing is profoundly involved in cancer progression through abnormal expression or mutation of splicing factors. Small-molecule splicing modulators have recently attracted considerable attention as a novel class of cancer therapeutics, and several splicing modulators are currently being developed for the treatment of patients with various cancers and are in the clinical trial stage. Novel molecular mechanisms modulating alternative splicing have proven to be effective for treating cancer cells resistant to conventional anticancer drugs. Furthermore, molecular mechanism-based combination strategies and patient stratification strategies for cancer treatment targeting pre-mRNA splicing must be considered for cancer therapy in the future. This review summarizes recent progress in the relationship between druggable splicing-related molecules and cancer, highlights small-molecule splicing modulators, and discusses future perspectives of splicing modulation for personalized and combination therapies in cancer treatment

    15-keto-PGE2 acts as switched agonist of EP receptors

    Get PDF
    Prostaglandin E2 (PGE2) is well-known as an endogenous proinflammatory prostanoid synthesized from arachidonic acid by the activation of cyclooxygenase-2. E type prostanoid (EP) receptors are cognates for PGE2 that have four main subtypes: EP1 to EP4. Of these, the EP2 and EP4 prostanoid receptors have been shown to couple to Gαs-protein and can activate adenylyl cyclase to form cAMP. Studies suggest that EP4 receptors are involved in colorectal homeostasis and cancer development, but further work is needed to identify the roles of EP2 receptors in these functions. After sufficient inflammation has been evoked by PGE2, it is metabolized to 15-keto-PGE2. Thus, 15-keto-PGE2 has long been considered an inactive metabolite of PGE2. However, it may have an additional role as a biased and/or partial agonist capable of taking over the actions of PGE2 to gradually terminate reactions. Here, using cell-based experiments and in silico simulations, we show that PGE2-activated EP4 receptor–mediated signaling may evoke the primary initiating reaction of the cells, which would take over the 15-keto-PGE2–activated EP2 receptor–mediated signaling after PGE2 is metabolized to 15-keto-PGE2. The present results shed light on new aspects of 15-keto-PGE2, which may have important roles in passing on activities to EP2 receptors from PGE2-stimulated EP4 receptors as a “switched agonist.” This novel mechanism may be significant for gradually terminating PGE2-evoked inflammation and/or maintaining homeostasis of colorectal tissues/cells functions

    Cellular density‐dependent increases in HIF‐1α compete with c‐Myc to down‐regulate human EP4 receptor promoter activity through Sp‐1‐binding region

    Get PDF
    The up‐regulated expression of E‐type prostanoid (EP) 4 receptors has been implicated in carcinogenesis; however, the expression of EP4 receptors has also been reported to be weaker in tumor tissues than in normal tissues. Indeed, EP4 receptors have been suggested to play a role in the maintenance of colorectal homeostasis. This study aimed to examine the underlying mechanisms/reasons for why inconsistent findings have been reported regarding EP4 receptor expression levels in homeostasis and carcinogenesis by focusing on cellular densities. Thus, the human colon cancer HCA‐7 cells, which retain some functional features of normal epithelia, and luciferase reporter genes containing wild‐type or mutated EP4 receptor promoters were used for elucidating the cellular density‐dependent mechanisms about the regulation of EP4 receptor expression. In silico analysis was also utilized for confirming the relevance of the findings with respect to colon cancer development. We here demonstrated that the expression of EP4 receptors was up‐regulated by c‐Myc by binding to Sp‐1 under low cellular density conditions, but was down‐regulated under high cellular density conditions via the increase in the expression levels of HIF‐1α protein, which may pull out c‐Myc and Sp‐1 from DNA‐binding. The tightly regulated EP4 receptor expression mechanism may be a critical system for maintaining homeostasis in normal colorectal epithelial cells. Therefore, once the system is altered, possibly due to the transient overexpression of EP4 receptors, it may result in aberrant cellular proliferation and transformation to cancerous phenotypes. However, at the point, EP4 receptors themselves and their mediated homeostasis would be no longer required

    In Vivo

    Get PDF
    In vivo real-time visualization of the process of angiogenesis in secondary tumors in the same living animals presents a major challenge in metastasis research. We developed a technique for intravital imaging of colorectal liver metastasis development in live mice using two-photon laser scanning microscopy (TPLSM). We also developed time-series TPLSM in which intravital TPLSM procedures were performed several times over periods of days to months. Red fluorescent protein-expressing colorectal cancer cells were inoculated into the spleens of green fluorescent protein-expressing mice. First- and second-round intravital TPLSM allowed visualization of viable cancer cells (red) in hepatic sinusoids or the space of Disse. Third-round intravital TPLSM demonstrated liver metastatic colonies consisting of viable cancer cells and surrounding stroma with tumor vessels (green). In vivo time-course imaging of tumor angiogenesis in the same living mice using time-series TPLSM could be an ideal tool for antiangiogenic drug evaluation, reducing the effects of interindividual variation

    Neonatal hemochromatosis with epsilon gamma delta beta-thalassemia: a case report and analysis of serum iron regulators

    Get PDF
    Background Neonatal hemochromatosis causes acute liver failure during the neonatal period, mostly due to gestational alloimmune liver disease (GALD). Thalassemia causes hemolytic anemia and ineffective erythropoiesis due to mutations in the globin gene. Although neonatal hemochromatosis and thalassemia have completely different causes, the coexistence of these diseases can synergistically exacerbate iron overload. We report that a newborn with epsilon gamma delta beta-thalassemia developed neonatal hemochromatosis, which did not respond to iron chelators and rapidly worsened, requiring living-donor liver transplantation. Case presentation A 1-day-old Japanese boy with hemolytic anemia and targeted red blood cells was diagnosed with epsilon gamma delta beta-thalassemia by genetic testing, and required frequent red blood cell transfusions. At 2 months after birth, exacerbation of jaundice, grayish-white stool, and high serum ferritin levels were observed, and liver biopsy showed iron deposition in hepatocytes and Kupffer cells. Magnetic resonance imaging scans showed findings suggestive of iron deposits in the liver, spleen, pancreas, and bone marrow. The total amount of red blood cell transfusions administered did not meet the criteria for post-transfusion iron overload. Administration of an iron-chelating agent was initiated, but iron overload rapidly progressed to liver failure without improvement in jaundice and liver damage. He underwent living-donor liver transplantation from his mother, after which iron overload disappeared, and no recurrence of iron overload was observed. Immunohistochemical staining for C5b-9 in the liver was positive. Serum hepcidin levels were low and serum growth differentiation factor-15 levels were high prior to living-donor liver transplantation. Conclusions We reported that an infant with epsilon gamma delta beta-thalassemia developed NH due to GALD, and that coexistence of ineffective erythropoiesis in addition to erythrocyte transfusions may have exacerbated iron overload. Low serum hepcidin levels, in this case, might have been caused by decreased hepcidin production arising from fetal liver damage due to neonatal hemochromatosis and increased hepcidin-inhibiting hematopoietic mediators due to the ineffective hematopoiesis observed in thalassemia
    • 

    corecore