119 research outputs found

    Categorical discrimination of human body parts by magnetoencephalography

    Get PDF
    Humans recognize body parts in categories. Previous studies have shown that responses in the fusiform body area (FBA) and extrastriate body area (EBA) are evoked by the perception of the human body, when presented either as whole or as isolated parts. These responses occur approximately 190 ms after body images are visualized. The extent to which body-sensitive responses show specificity for different body part categories remains to be largely clarified. We used a decoding method to quantify neural responses associated with the perception of different categories of body parts. Nine subjects underwent measurements of their brain activities by magnetoencephalography (MEG) while viewing 14 images of feet, hands, mouths, and objects. We decoded categories of the presented images from the MEG signals using a support vector machine (SVM) and calculated their accuracy by 10-fold cross-validation. For each subject, a response that appeared to be a body-sensitive response was observed and the MEG signals corresponding to the three types of body categories were classified based on the signals in the occipitotemporal cortex. The accuracy in decoding body- part categories (with a peak at approximately 48%) was above chance (33.3%) and significantly higher than that for random categories. According to the time course and location, the responses are suggested to be body-sensitive and to include information regarding the body-part category. Finally, this non-invasive method can decode category information of a visual object with high temporal and spatial resolution and this result may have a significant impact in the field of brain-machine interface research

    Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG

    Get PDF
    Hashimoto H., Hasegawa Y., Araki T., et al. Non-invasive detection of language-related prefrontal high gamma band activity with beamforming MEG. Scientific Reports 7, 14262 (2017); https://doi.org/10.1038/s41598-017-14452-3.High gamma band (>50 Hz) activity is a key oscillatory phenomenon of brain activation. However, there has not been a non-invasive method established to detect language-related high gamma band activity. We used a 160-channel whole-head magnetoencephalography (MEG) system equipped with superconducting quantum interference device (SQUID) gradiometers to non-invasively investigate neuromagnetic activities during silent reading and verb generation tasks in 15 healthy participants. Individual data were divided into alpha (8-13 Hz), beta (13-25 Hz), low gamma (25-50 Hz), and high gamma (50-100 Hz) bands and analysed with the beamformer method. The time window was consecutively moved. Group analysis was performed to delineate common areas of brain activation. In the verb generation task, transient power increases in the high gamma band appeared in the left middle frontal gyrus (MFG) at the 550-750 ms post-stimulus window. We set a virtual sensor on the left MFG for time-frequency analysis, and high gamma event-related synchronization (ERS) induced by a verb generation task was demonstrated at 650 ms. In contrast, ERS in the high gamma band was not detected in the silent reading task. Thus, our study successfully non-invasively measured language-related prefrontal high gamma band activity

    Cellular density‐dependent increases in HIF‐1α compete with c‐Myc to down‐regulate human EP4 receptor promoter activity through Sp‐1‐binding region

    Get PDF
    The up‐regulated expression of E‐type prostanoid (EP) 4 receptors has been implicated in carcinogenesis; however, the expression of EP4 receptors has also been reported to be weaker in tumor tissues than in normal tissues. Indeed, EP4 receptors have been suggested to play a role in the maintenance of colorectal homeostasis. This study aimed to examine the underlying mechanisms/reasons for why inconsistent findings have been reported regarding EP4 receptor expression levels in homeostasis and carcinogenesis by focusing on cellular densities. Thus, the human colon cancer HCA‐7 cells, which retain some functional features of normal epithelia, and luciferase reporter genes containing wild‐type or mutated EP4 receptor promoters were used for elucidating the cellular density‐dependent mechanisms about the regulation of EP4 receptor expression. In silico analysis was also utilized for confirming the relevance of the findings with respect to colon cancer development. We here demonstrated that the expression of EP4 receptors was up‐regulated by c‐Myc by binding to Sp‐1 under low cellular density conditions, but was down‐regulated under high cellular density conditions via the increase in the expression levels of HIF‐1α protein, which may pull out c‐Myc and Sp‐1 from DNA‐binding. The tightly regulated EP4 receptor expression mechanism may be a critical system for maintaining homeostasis in normal colorectal epithelial cells. Therefore, once the system is altered, possibly due to the transient overexpression of EP4 receptors, it may result in aberrant cellular proliferation and transformation to cancerous phenotypes. However, at the point, EP4 receptors themselves and their mediated homeostasis would be no longer required

    Lamivudine treatment in patients with HBV-related hepatocellular carcinoma--using an untreated, matched control cohort.

    Get PDF
    Lamivudine is widely used to treat patients with hepatitis B. However, the outcomes in patients with hepatocellular carcinoma (HCC) treated with lamivudine have not been established. This study was conducted to evaluate the outcomes of lamivudine treatment for patients with HCC using an untreated, matched control group. Thirty patients with controlled HCC orally received lamivudine. As controls, 40 patients with HCC who were not treated with lamivudine and matched for clinical features were selected. The lamivudine-treated and untreated groups were compared with respect to changes in liver function, HCC recurrence, survival, and cause of death. In the lamivudine-treated group, there was significant improvement in the Child-Pugh score at 24 months after starting treatment, while no improvement was observed in the untreated group. There was no significant difference in the cumulative incidence of HCC recurrence and survival between the groups. However, there was a significant difference in the cumulative incidence of death due to liver failure (P= 0.043). A significant improvement in liver function was achieved by lamivudine treatment, even in patients with HCC. These results suggest that lamivudine treatment for patients with HCC may prevent death due to liver failure. Further prospective randomized studies using a larger number of patients are required.</p

    Pancreatic RECK inactivation promotes cancer formation, epithelial-mesenchymal transition, and metastasis

    Get PDF
    膵癌悪性化の分子機構解明 --RECK発現の低下が膵癌の浸潤・転移を引き起こす--. 京都大学プレスリリース. 2023-09-19.RECK is downregulated in various human cancers; however, how RECK inactivation affects carcinogenesis remains unclear. We addressed this issue in a pancreatic ductal adenocarcinoma (PDAC) mouse model and found that pancreatic Reck deletion dramatically augmented the spontaneous development of PDAC with a mesenchymal phenotype, which was accompanied by increased liver metastases and decreased survival. Lineage tracing revealed that pancreatic Reck deletion induced epithelial-mesenchymal transition (EMT) in PDAC cells, giving rise to inflammatory cancer-associated fibroblast–like cells in mice. Splenic transplantation of Reck-null PDAC cells resulted in numerous liver metastases with a mesenchymal phenotype, whereas reexpression of RECK markedly reduced metastases and changed the PDAC tumor phenotype into an epithelial one. Consistently, low RECK expression correlated with low E-cadherin expression, poor differentiation, metastasis, and poor prognosis in human PDAC. RECK reexpression in the PDAC cells was found to downregulate MMP2 and MMP3, with a concomitant increase in E-cadherin and decrease in EMT-promoting transcription factors. An MMP inhibitor recapitulated the effects of RECK on the expression of E-cadherin and EMT-promoting transcription factors and invasive activity. These results establish the authenticity of RECK as a pancreatic tumor suppressor, provide insights into its underlying mechanisms, and support the idea that RECK could be an important therapeutic effector against human PDAC

    Identification of novel biomarker candidates by proteomic analysis of cerebrospinal fluid from patients with moyamoya disease using SELDI-TOF-MS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Moyamoya disease (MMD) is an uncommon cerebrovascular condition with unknown etiology characterized by slowly progressive stenosis or occlusion of the bilateral internal carotid arteries associated with an abnormal vascular network. MMD is a major cause of stroke, specifically in the younger population. Diagnosis is based on only radiological features as no other clinical data are available. The purpose of this study was to identify novel biomarker candidate proteins differentially expressed in the cerebrospinal fluid (CSF) of patients with MMD using proteomic analysis.</p> <p>Methods</p> <p>For detection of biomarkers, CSF samples were obtained from 20 patients with MMD and 12 control patients. Mass spectral data were generated by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS) with an anion exchange chip in three different buffer conditions. After expression difference mapping was undertaken using the obtained protein profiles, a comparative analysis was performed.</p> <p>Results</p> <p>A statistically significant number of proteins (34) were recognized as single biomarker candidate proteins which were differentially detected in the CSF of patients with MMD, compared to the control patients (p < 0.05). All peak intensity profiles of the biomarker candidates underwent classification and regression tree (CART) analysis to produce prediction models. Two important biomarkers could successfully classify the patients with MMD and control patients.</p> <p>Conclusions</p> <p>In this study, several novel biomarker candidate proteins differentially expressed in the CSF of patients with MMD were identified by a recently developed proteomic approach. This is a pilot study of CSF proteomics for MMD using SELDI technology. These biomarker candidates have the potential to shed light on the underlying pathogenesis of MMD.</p
    corecore