43 research outputs found

    Long-term Follow-up of Living-Donor Kidney Transplantation after Cadaveric Lung Transplantation

    Get PDF
    Although chronic kidney disease (CKD) commonly develops after lung transplantation (LT), living-donor kid-ney transplantation (LDKT) for CKD after LT is known to provide favorable outcomes. We describe the long-term follow-up findings of a patient who underwent LDKT after bilateral cadaveric LT. A 37-year-old male underwent LDKT for CKD 18 years after receiving bilateral cadaveric LT. He developed chronic lung allograft dysfunction (CLAD) 20 years after the LT; however, at 26 years after the initial LT, he is still alive with no pro-gression of CLAD or CKD. KT could be a viable option for CKD even after LT in Japan

    YES1 activation induces acquired resistance to neratinib in HER2-amplified breast and lung cancers

    Get PDF
    Molecular-targeted therapies directed against human epidermal growth factor receptor 2 (HER2) are evolving for various cancers. Neratinib is an irreversible pan-HER tyrosine kinase inhibitor and has been approved by the FDA as an effective drug for HER2-positive breast cancer. However, acquired resistance of various cancers to molecular-targeted drugs is an issue of clinical concern, and emergence of resistance to neratinib is also considered inevitable. In this study, we established various types of neratinib-resistant cell lines from HER2-amplified breast and lung cancer cell lines using several drug exposure conditions. We analyzed the mechanisms of emergence of the resistance in these cell lines and explored effective strategies to overcome the resistance. Our results revealed that amplification of YES1, which is a member of the SRC family, was amplified in two neratinib-resistant breast cancer cell lines and one lung cancer cell line. Knockdown of YES1 by siRNA and pharmacological inhibition of YES1 by dasatinib restored the sensitivity of the YES1-amplified cell lines to neratinib in vitro. Combined treatment with dasatinib and neratinib inhibited tumor growth in vivo. This combination also induced downregulation of signaling molecules such as HER2, AKT and MAPK. Our current results indicate that YES1 plays an important role in the emergence of resistance to HER2-targeted drugs, and that dasatinib enables such acquired resistance to neratinib to be overcome

    One-step nucleic acid amplification for intraoperative diagnosis of lymph node metastasis in lung cancer patients: a single-center prospective study

    Get PDF
    One-step nucleic acid amplification (OSNA) is a rapid intraoperative molecular detection technique for sentinel node assessment via the quantitative measurement of target cytokeratin 19 (CK19) mRNA to determine the presence of metastasis. It has been validated in breast cancer but its application in lung cancer has not been adequately investigated. 214 LNs from 105 patients with 100 primary lung cancers, 2 occult primary lung tumors, and 3 metastatic lung tumors, who underwent surgical lung resection with LN dissection between February 2018 and January 2020, were assessed. Resected LNs were divided into two parts: one was snap-frozen for OSNA and the other underwent rapidly frozen histological examination. Intraoperatively collected LNs were evaluated by OSNA using loop-mediated isothermal amplification and compared with intraoperative pathological diagnosis as a control. Among 214 LNs, 14 were detected as positive by OSNA, and 11 were positive by both OSNA and intraoperative pathological diagnosis. The sensitivity and specificity of OSNA was 84.6% and 98.5%, respectively. The results of 5 of 214 LNs were discordant, and the remainder all matched (11 positive and 198 negative) with a concordance rate of 97.7%. Although the analysis of public mRNA expression data from cBioPortal showed that CK19 expression varies greatly depending on the cancer type and histological subtype, the results of the five cases, except for primary lung cancer, were consistent. OSNA provides sufficient diagnostic accuracy and speed and can be applied to the intraoperative diagnosis of LN metastasis for non-small cell lung cancer

    Overcoming epithelial-mesenchymal transition-mediated drug resistance with monensin-based combined therapy in non-small cell lung cancer

    Get PDF
    Background The epithelial-mesenchymal transition (EMT) is a key process in tumor progression and metastasis and is also associated with drug resistance. Thus, controlling EMT status is a research of interest to conquer the malignant tumors. Materials and methods A drug repositioning analysis of transcriptomic data from a public cell line database identified monensin, a widely used in veterinary medicine, as a candidate EMT inhibitor that suppresses the conversion of the EMT phenotype. Using TGF-β-induced EMT cell line models, the effects of monensin on the EMT status and EMT-mediated drug resistance were assessed. Results TGF-β treatment induced EMT in non-small cell lung cancer (NSCLC) cell lines and the EGFR-mutant NSCLC cell lines with TGF-β-induced EMT acquired resistance to EGFR-tyrosine kinase inhibitor. The addition of monensin effectively suppressed the TGF-β-induced-EMT conversion, and restored the growth inhibition and the induction of apoptosis by the EGFR-tyrosine kinase inhibitor. Conclusion Our data suggested that combined therapy with monensin might be a useful strategy for preventing EMT-mediated acquired drug resistance

    Dynamic Analysis of Photosynthate Translocation Into Strawberry Fruits Using Non-invasive 11C-Labeling Supported With Conventional Destructive Measurements Using 13C-Labeling

    Get PDF
    In protected strawberry (Fragaria × ananassa Duch.) cultivation, environmental control based on the process of photosynthate translocation is essential for optimizing fruit quality and yield, because the process of photosynthate translocation directly affects dry matter partitioning. We visualized photosynthate translocation to strawberry fruits non-invasively with 11CO2 and a positron-emitting tracer imaging system (PETIS). We used PETIS to evaluate real-time dynamics of 11C-labeled photosynthate translocation from a 11CO2-fed leaf, which was immediately below the inflorescence, to individual fruits on an inflorescence in intact plant. Serial photosynthate translocation images and animations obtained by PETIS verified that the 11C-photosynthates from the source leaf reached the sink fruit within 1 h but did not accumulate homogeneously within a fruit. The quantity of photosynthate translocation as represented by 11C radioactivity varied among individual fruits and their positions on the inflorescence. Photosynthate translocation rates to secondary fruit were faster than those to primary or tertiary fruits, even though the translocation pathway from leaf to fruit was the longest for the secondary fruit. Moreover, the secondary fruit was 25% smaller than the primary fruit. Sink activity (11C radioactivity/dry weight [DW]) of the secondary fruit was higher than those of the primary and tertiary fruits. These relative differences in sink activity levels among the three fruit positions were also confirmed by 13C tracer measurement. Photosynthate translocation rates in the pedicels might be dependent on the sink strength of the adjoining fruits. The present study established 11C-photosynthate arrival times to the sink fruits and demonstrated that the translocated material does not uniformly accumulate within a fruit. The actual quantities of translocated photosynthates from a specific leaf differed among individual fruits on the same inflorescence. To the best of our knowledge, this is the first reported observation of real-time translocation to individual fruits in an intact strawberry plant using 11C-radioactive- and 13C-stable-isotope analyses

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF
    corecore