221 research outputs found
J/psi c\bar{c} production in e+e- and hadronic interactions
Predictions of the nonperturbative Quark Gluon Strings model based on the
1/N-expansion in QCD and string picture of interactions for production of
states containing heavy quarks are considered. Relations between fragmentation
functions for different states are used to predict the fragmentation function
of c-quark to J/psi-mesons. The resulting cross section for J/psi-production in
e+e- annihilation is in a good agreement with recent Belle result. It is argued
that associated production of c\bar{c} states with open charm should give a
substantial contribution to production of these states in hadronic interactions
at very high energies.Comment: 7 pages, 2 figure
Feynman scaling violation on baryon spectra in pp collisions at LHC and cosmic ray energies
A significant asymmetry in baryon/antibaryon yields in the central region of
high energy collisions is observed when the initial state has non-zero baryon
charge. This asymmetry is connected with the possibility of baryon charge
diffusion in rapidity space. Such a diffusion should decrease the baryon charge
in the fragmentation region and translate into the corresponding decrease of
the multiplicity of leading baryons. As a result, a new mechanism for Feynman
scaling violation in the fragmentation region is obtained. Another numerically
more significant reason for the Feynman scaling violation comes from the fact
that the average number of cutted Pomerons increases with initial energy. We
present the quantitative predictions of the Quark-Gluon String Model (QGSM) for
the Feynman scaling violation at LHC energies and at even higher energies that
can be important for cosmic ray physics.Comment: 21 pages, 11 figures, and 1 table. arXiv admin note: substantial text
overlap with arXiv:1107.1615, arXiv:1007.320
The Updated Zwicky Catalog (UZC)
The Zwicky Catalog of galaxies (ZC), with m_Zw<=15.5mag, has been the basis
for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of
the ZC and redshift surveys based on it have relied on heterogeneous sets of
galaxy coordinates and redshifts. Here we correct some of the inadequacies of
previous catalogs by providing: (1) coordinates with <~2 arcsec errors for all
of the Nuzc catalog galaxies, (2) homogeneously estimated redshifts for the
majority (98%) of the data taken at the CfA (14,632 spectra), and (3) an
estimate of the remaining "blunder" rate for both the CfA redshifts and for
those compiled from the literature. For the reanalyzed CfA data we include a
calibrated, uniformly determined error and an indication of the presence of
emission lines in each spectrum. We provide redshifts for 7,257 galaxies in the
CfA2 redshift survey not previously published; for another 5,625 CfA redshifts
we list the remeasured or uniformly re-reduced value. Among our new
measurements, Nmul are members of UZC "multiplets" associated with the original
Zwicky catalog position in the coordinate range where the catalog is 98%
complete. These multiplets provide new candidates for examination of tidal
interactions among galaxies. All of the new redshifts correspond to UZC
galaxies with properties recorded in the CfA redshift compilation known as
ZCAT. About 1,000 of our new measurements were motivated either by inadequate
signal-to-noise in the original spectrum or by an ambiguous identification of
the galaxy associated with a ZCAT redshift. The redshift catalog we include
here is ~96% complete to m_Zw<=15.5, and ~98% complete (12,925 galaxies out of
a total of 13,150) for the RA(1950) ranges [20h--4h] and [8h--17h] and
DEC(1950) range [-2.5d--50d]. (abridged)Comment: 34 pp, 7 figs, PASP 1999, 111, 43
Detailing the relation between renal T(2)* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements
OBJECTIVES: This study was designed to detail the relation between renal T2* and renal tissue pO2 using an integrated approach that combines parametric magnetic resonance imaging (MRI) and quantitative physiological measurements (MR-PHYSIOL. MATERIALS AND METHODS: Experiments were performed in 21 male Wistar rats. In vivo modulation of renal hemodynamics and oxygenation was achieved by brief periods of aortic occlusion, hypoxia, and hyperoxia. Renal perfusion pressure (RPP), renal blood flow (RBF), local cortical and medullary tissue pO2, and blood flux were simultaneously recorded together with T2*, T2 mapping, and magnetic resonance-based kidney size measurements (MR-PHYSIOL). Magnetic resonance imaging was carried out on a 9.4-T small-animal magnetic resonance system. Relative changes in the invasive quantitative parameters were correlated with relative changes in the parameters derived from MRI using Spearman analysis and Pearson analysis. RESULTS: Changes in T2* qualitatively reflected tissue pO2 changes induced by the interventions. T2* versus pO2 Spearman rank correlations were significant for all interventions, yet quantitative translation of T2*/pO2 correlations obtained for one intervention to another intervention proved not appropriate. The closest T2*/pO2 correlation was found for hypoxia and recovery. The interlayer comparison revealed closest T2*/pO2 correlations for the outer medulla and showed that extrapolation of results obtained for one renal layer to other renal layers must be made with due caution. For T2* to RBF relation, significant Spearman correlations were deduced for all renal layers and for all interventions. T2*/RBF correlations for the cortex and outer medulla were even superior to those between T2* and tissue pO2. The closest T2*/RBF correlation occurred during hypoxia and recovery. Close correlations were observed between T2* and kidney size during hypoxia and recovery and for occlusion and recovery. In both cases, kidney size correlated well with renal vascular conductance, as did renal vascular conductance with T2*. Our findings indicate that changes in T2* qualitatively mirror changes in renal tissue pO2 but are also associated with confounding factors including vascular volume fraction and tubular volume fraction. CONCLUSIONS: Our results demonstrate that MR-PHYSIOL is instrumental to detail the link between renal tissue pO2 and T2* in vivo. Unravelling the link between regional renal T2* and tissue pO2, including the role of the T2* confounding parameters vascular and tubular volume fraction and oxy-hemoglobin dissociation curve, requires further research. These explorations are essential before the quantitative capabilities of parametric MRI can be translated from experimental research to improved clinical understanding of hemodynamics/oxygenation in kidney disorders
Options for Scaling up Community-Based Health Insurance for Rural Communities in Armenia
This paper summarises the results of a study which examined international experience with regard to community-based health financing (CBHF) schemes, scaling up CBHF schemes, and the feasibility of scaling up community-based health insurance (CBHI) in Armenia. It was based on a literature review of international experience and qualitative research in Armenia. The recommendations derived from this study have relevance both for Armenia and for the use of CBHI schemes as a tool for promoting pro-poor health system reform in low-resource settings more generally
Water desalination in the Gaza Strip: Al Salam RO brackish water desalination plant case study
Ongoing deterioration of the water supply of the Gaza strip poses a difficult challenge for water planners
and sustainable management of the coastal aquifer. The aquifer is currently overexploited, with total
pumping exceeding total recharge. In addition, anthropogenic sources of pollution threaten the water
supplies in major urban centres. Many water quality parameters presently exceed World Health Organisation (WHO) drinking water standards. The major documented water quality problems are
elevated chloride (salinity) and nitrate concentrations in the aquifer. Up to 95 per cent of Gaza’s population source their drinking water from 154 public or private producers, whose production and supply chain result in the potential contamination of up to 68% of drinking water supplies, exposing nearly 60% of the population to severe public health risks. This paper presents the details of the
implementation of a medium scale brackish water desalination plant constructed in eastern Rafah – Gaza
by Oxfam and its partner the Coastal Municipalities Water Utility
Quark-Gluon String Model Description of Baryon Production in K^{\pm}N Interactions
The process of baryon production in K p collisions at high energies is
considered in the framework of the Quark-Gluon String Model. The contribution
of the string-junction mechanism to the strange baryon production is analysed.
The results of numerical calculations are in reasonable agreement with the data
on inclusive spectra of p, Lambda, bar{Lambda}, and on the bar{Lambda}/Lambda
asymmetry. The predictions for Xi and Omega baryons are presented.Comment: 19 pages, 7 figure
Production of Secondaries in High Energy d+Au Collisions
In the framework of Quark-Gluon String Model we calculate the inclusive
spectra of secondaries produced in d+Au collisions at intermediate (CERN SPS)
and at much higher (RHIC) energies. The results of numerical calculations at
intermediate energies are in reasonable agreement with the data. At RHIC
energies numerically large inelastic screening corrections (percolation
effects) should be accounted for in calculations. We extract these effects from
the existing RHIC experimental data on minimum bias and central d+Au
collisions. The predictions for p+Au interactions at LHC energy are also given.Comment: 18 pages and 10 figure
Detailing renal hemodynamics and oxygenation in rats by a combined near-infrared spectroscopy and invasive probe approach
We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation
- …